Suppr超能文献

一种替代性体外瘤胃发酵预测模型的开发。

Development of an Alternative In Vitro Rumen Fermentation Prediction Model.

作者信息

Wang Xinjie, Zhou Jianzhao, Jiang Runjie, Wang Yuxuan, Zhang Yonggen, Wu Renbiao, A Xiaohui, Du Haitao, Tian Jiaxu, Wei Xiaoli, Shen Weizheng

机构信息

College of Electric and Information, Northeast Agricultural University, Harbin 150038, China.

College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150038, China.

出版信息

Animals (Basel). 2024 Jan 17;14(2):289. doi: 10.3390/ani14020289.

Abstract

The aim of this study is to identify an alternative approach for simulating the in vitro fermentation and quantifying the production of rumen methane and rumen acetic acid during the rumen fermentation process with different total mixed rations. In this experiment, dietary nutrient compositions (neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), and dry matter (DM)) were selected as input parameters to establish three prediction models for rumen fermentation parameters (methane and acetic acid): an artificial neural network model, a genetic algorithm-bp model, and a support vector machine model. The research findings show that the three models had similar simulation results that aligned with the measured data trends (R ≥ 0.83). Additionally, the root mean square errors (RMSEs) were ≤1.85 mL/g in the rumen methane model and ≤2.248 mmol/L in the rumen acetic acid model. Finally, this study also demonstrates the models' capacity for generalization through an independent verification experiment, as they effectively predicted outcomes even when significant trial factors were manipulated. These results suggest that machine learning-based in vitro rumen models can serve as a valuable tool for quantifying rumen fermentation parameters, guiding the optimization of dietary structures for dairy cows, rapidly screening methane-reducing feed options, and enhancing feeding efficiency.

摘要

本研究的目的是确定一种替代方法,用于模拟体外发酵,并量化不同全混合日粮在瘤胃发酵过程中瘤胃甲烷和瘤胃乙酸的产生量。在本实验中,选择日粮营养成分(中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、粗蛋白(CP)和干物质(DM))作为输入参数,建立瘤胃发酵参数(甲烷和乙酸)的三个预测模型:人工神经网络模型、遗传算法-bp模型和支持向量机模型。研究结果表明,这三个模型具有相似的模拟结果,与实测数据趋势一致(R≥0.83)。此外,瘤胃甲烷模型的均方根误差(RMSE)≤1.85 mL/g,瘤胃乙酸模型的均方根误差≤2.248 mmol/L。最后,本研究还通过独立验证实验证明了模型的泛化能力,因为即使在显著试验因素被操纵的情况下,它们也能有效预测结果。这些结果表明,基于机器学习的体外瘤胃模型可作为一种有价值的工具,用于量化瘤胃发酵参数、指导奶牛日粮结构优化、快速筛选减甲烷饲料选项以及提高饲养效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验