Tuninetti Víctor, Forcael Diego, Valenzuela Marian, Martínez Alex, Ávila Andrés, Medina Carlos, Pincheira Gonzalo, Salas Alexis, Oñate Angelo, Duchêne Laurent
Department of Mechanical Engineering, Universidad de La Frontera, Temuco 4811230, Chile.
Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco 4811230, Chile.
Materials (Basel). 2024 Jan 8;17(2):317. doi: 10.3390/ma17020317.
The manufacturing processes and design of metal and alloy products can be performed over a wide range of strain rates and temperatures. To design and optimize these processes using computational mechanics tools, the selection and calibration of the constitutive models is critical. In the case of hazardous and explosive impact loads, it is not always possible to test material properties. For this purpose, this paper assesses the efficiency and the accuracy of different architectures of ANNs for the identification of the Johnson-Cook material model parameters. The implemented computational tool of an ANN-based parameter identification strategy provides adequate results in a range of strain rates required for general manufacturing and product design applications. Four ANN architectures are studied to find the most suitable configuration for a reduced amount of experimental data, particularly for cases where high-impact testing is constrained. The different ANN structures are evaluated based on the model's predictive capability, revealing that the perceptron-based network of 66 inputs and one hidden layer of 30 neurons provides the highest prediction accuracy of the effective flow stress-strain behavior of Ti64 alloy and three virtual materials.
金属及合金产品的制造工艺和设计可在很宽的应变速率和温度范围内进行。为了使用计算力学工具来设计和优化这些工艺,本构模型的选择和校准至关重要。在危险和爆炸冲击载荷的情况下,并非总能测试材料性能。为此,本文评估了不同架构的人工神经网络(ANN)在识别Johnson-Cook材料模型参数方面的效率和准确性。基于ANN的参数识别策略所实现的计算工具,在一般制造和产品设计应用所需的一系列应变速率范围内都能提供足够的结果。研究了四种ANN架构,以找到在实验数据量减少的情况下,特别是在高冲击测试受到限制的情况下最合适的配置。基于模型的预测能力对不同的ANN结构进行了评估,结果表明,具有66个输入和一个包含30个神经元的隐藏层的基于感知器的网络,对Ti64合金和三种虚拟材料的有效流动应力-应变行为提供了最高的预测精度。