Tuninetti Víctor, Narayan Sunny, Ríos Ignacio, Menacer Brahim, Valle Rodrigo, Al-Lehaibi Moaz, Kaisan Muhammad Usman, Samuel Joseph, Oñate Angelo, Pincheira Gonzalo, Mertens Anne, Duchêne Laurent, Garrido César
Department of Mechanical Engineering, Universidad de La Frontera, Temuco 4811230, Chile.
Department of Mechanics and Advanced Materials, Campus Monterrey, School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey 64849, Mexico.
Biomimetics (Basel). 2025 Jul 12;10(7):458. doi: 10.3390/biomimetics10070458.
Lattice structures emerged as a revolutionary class of materials with significant applications in aerospace, biomedical engineering, and mechanical design due to their exceptional strength-to-weight ratio, energy absorption properties, and structural efficiency. This review systematically examines recent advancements in lattice structures, with a focus on their classification, mechanical behavior, and optimization methodologies. Stress distribution, deformation capacity, energy absorption, and computational modeling challenges are critically analyzed, highlighting the impact of manufacturing defects on structural integrity. The review explores the latest progress in hybrid additive manufacturing, hierarchical lattice structures, modeling and simulation, and smart adaptive materials, emphasizing their potential for self-healing and real-time monitoring applications. Furthermore, key research gaps are identified, including the need for improved predictive computational models using artificial intelligence, scalable manufacturing techniques, and multi-functional lattice systems integrating thermal, acoustic, and impact resistance properties. Future directions emphasize cost-effective material development, sustainability considerations, and enhanced experimental validation across multiple length scales. This work provides a comprehensive foundation for future research aimed at optimizing biomimetic lattice structures for enhanced mechanical performance, scalability, and industrial applicability.
晶格结构作为一类具有革命性的材料出现,由于其优异的强度重量比、能量吸收特性和结构效率,在航空航天、生物医学工程和机械设计等领域有着重要应用。本综述系统地研究了晶格结构的最新进展,重点关注其分类、力学行为和优化方法。对应力分布、变形能力、能量吸收和计算建模挑战进行了批判性分析,突出了制造缺陷对结构完整性的影响。本综述探讨了混合增材制造、分层晶格结构、建模与仿真以及智能自适应材料的最新进展,强调了它们在自愈和实时监测应用方面的潜力。此外,还确定了关键的研究差距,包括需要使用人工智能改进预测计算模型、可扩展制造技术以及集成热、声和抗冲击性能的多功能晶格系统。未来的方向强调具有成本效益的材料开发、可持续性考虑以及在多个长度尺度上加强实验验证。这项工作为未来旨在优化仿生晶格结构以提高力学性能、可扩展性和工业适用性的研究提供了全面的基础。