Suppr超能文献

利用暴露数据确定药物不良事件关系中的因果关系:以去甲文拉法辛为例。

Use of Exposure Data to Establish Causality in Drug-Adverse Event Relationships: An Example with Desvenlafaxine.

作者信息

Rodríguez-Lopez Andrea, Mejía-Abril Gina, Zubiaur Pablo, Calleja Sofía, Román Manuel, Abad-Santos Francisco, Ochoa Dolores

机构信息

Clinical Pharmacology Department, Hospital Universitario de La Princesa, Faculty of Medicine, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain.

Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain.

出版信息

Pharmaceuticals (Basel). 2024 Jan 3;17(1):69. doi: 10.3390/ph17010069.

Abstract

Causality algorithms help establish relationships between drug use and adverse event (AE) occurrence. High drug exposure leads to a higher likelihood of an AE being classified as an adverse drug reaction (ADR). However, there is a knowledge gap regarding what concentrations are predictive of ADRs, as this has not been systematically studied. In this work, the Spanish Pharmacovigilance System (SEFV) algorithm was used to define the relationship between the AE occurrence and drug administration in 178 healthy volunteers participating in five desvenlafaxine single-dose clinical trials, a selective serotonin and norepinephrine reuptake inhibitor that may cause dizziness, headache, nausea, dry mouth, constipation and hyperhidrosis. Eighty-three subjects presented 172 AEs that were classified as possible (101), conditional (31), unrelated (24) and probable (16). AUC and C were significantly higher in volunteers with vs. without ADRs (5981.24 ng·h/mL and 239.06 ng/mL and 4770.84 ng·h/mL and 200.69 ng/mL, respectively). Six of 19 subjects with conditional AEs with an SEFV score of 3 points presented an AUC ≥ 6500 ng·h/mL or a C ≥ 300 ng/mL (i.e., above percentile 75) and were summed one point on their SEFV score and classified as "possible" (4 points), improving the capacity of ADR detection.

摘要

因果关系算法有助于确立药物使用与不良事件(AE)发生之间的关系。高药物暴露会使AE被归类为药物不良反应(ADR)的可能性更高。然而,关于何种浓度可预测ADR存在知识空白,因为尚未对此进行系统研究。在这项研究中,西班牙药物警戒系统(SEFV)算法被用于界定178名参与五项去甲文拉法辛单剂量临床试验的健康志愿者中AE发生与药物给药之间的关系,去甲文拉法辛是一种选择性5-羟色胺和去甲肾上腺素再摄取抑制剂,可能导致头晕、头痛、恶心、口干、便秘和多汗。83名受试者出现了172起AE,这些AE被分类为可能(101起)、条件性(31起)、不相关(24起)和很可能(16起)。发生ADR的志愿者与未发生ADR的志愿者相比,AUC和C显著更高(分别为5981.24 ng·h/mL和239.06 ng/mL以及4770.84 ng·h/mL和200.69 ng/mL)。19名条件性AE且SEFV评分为3分的受试者中有6名的AUC≥6500 ng·h/mL或C≥300 ng/mL(即高于第75百分位数),其SEFV评分加1分并被归类为“可能”(4分),提高了ADR检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab6b/10819155/361eae401572/pharmaceuticals-17-00069-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验