Suppr超能文献

迈向将吸入气雾剂更精准地靶向输送至呼吸系统不同区域

Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System.

作者信息

Sosnowski Tomasz R

机构信息

Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland.

出版信息

Pharmaceutics. 2024 Jan 10;16(1):97. doi: 10.3390/pharmaceutics16010097.

Abstract

Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in the generation of aerosol micro- and nanoparticles on their regional distribution and deposition in the RS. Attention is given to the importance of process parameters during the aerosolization of liquids or powders and the role of aerosol flow dynamics in the RS. The interaction of deposited particles with the fluid environment of the lung is also pointed out as an important step in the mass transfer of the drug to the RS surface. The analysis presented highlights the technical aspects of preparing the precursors to ensure that the properties of the aerosol are suitable for a given therapeutic target. Through an analysis of existing technical limitations, selected strategies aimed at enhancing the effectiveness of targeted aerosol delivery to the RS have been identified and presented. These strategies also include the use of smart inhaling devices and systems with built-in AI algorithms.

摘要

药物气雾剂在肺部疾病的治疗中发挥着关键作用,同时由于其能够靶向呼吸系统(RS)的特定区域,在全身性疾病的治疗中也具有重要作用。本文重点在于识别和阐明参与气溶胶微米和纳米颗粒生成的各种因素对其在呼吸系统中的区域分布和沉积的影响。关注液体或粉末雾化过程中工艺参数的重要性以及气溶胶流动动力学在呼吸系统中的作用。沉积颗粒与肺部流体环境的相互作用也被指出是药物向呼吸系统表面传质的重要步骤。所呈现的分析突出了制备前体的技术方面,以确保气溶胶的性质适合给定的治疗目标。通过对现有技术局限性的分析,已确定并提出了旨在提高靶向气溶胶递送至呼吸系统有效性的选定策略。这些策略还包括使用具有内置人工智能算法的智能吸入装置和系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc7/10818612/3f0c0a0a38e7/pharmaceutics-16-00097-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验