Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom.
SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0155323. doi: 10.1128/aem.01553-23. Epub 2024 Jan 23.
Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution . Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.
抗病毒表面涂层正在开发中,以防止公共空间中高流量接触表面的病毒病媒传播。铜的抗病毒特性已被广泛记录,但铜表面的抗病毒机制尚不完全清楚。我们筛选了一系列金属和金属氧化物表面,以研究其对严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)的抗病毒活性,SARS-CoV-2 是冠状病毒病(COVID-19)的病原体。铜和氧化铜表面表现出对 SARS-CoV-2 的优异抗病毒活性;然而,抗病毒活性的水平取决于用于递送病毒接种物的载体溶液的组成。我们证明,从测试表面释放到溶液中的铜离子可以介导病毒失活,表明存在铜离子溶解依赖性的抗病毒机制。然而,抗病毒活性的水平并不取决于释放到溶液中的铜离子的量。相反,我们的发现表明,病毒失活的程度取决于铜离子与病毒载体溶液中其他生物分子(例如蛋白质/代谢物)的络合程度,这些生物分子与病毒成分竞争。尽管使用组织培养衍生的病毒接种物来评估铜衍生的测试表面的抗病毒活性在实验上很方便,但我们提出,组织培养基中的高有机含量会降低与病毒相互作用的“未络合”铜离子的可用性,从而对病毒失活产生负面影响,从而影响表面的抗病毒性能。我们建议,实验室抗病毒表面测试应包括在生理相关的载体溶液中递送的病毒(当测试呼吸道病毒时为唾液或鼻分泌物),以准确预测在公共空间中部署时的实际表面抗病毒性能。
重要性评估测试表面的抗病毒活性的目的是确定在公共空间的高流量接触表面上部署时能够有效防止病媒传播的表面。实验室测试的常规方法是使用组织培养衍生的病毒接种物;然而,这项研究表明,测试含铜表面的抗病毒性能取决于递送病毒接种物到测试表面的载体溶液的组成。因此,我们建议实验室表面测试应包括在生理相关的载体溶液中递送的病毒,以准确预测在公共空间中实际测试表面的性能。了解病毒失活的机制是未来合理设计改进的抗病毒表面的关键。在这里,我们证明铜表面将铜离子释放到含有 SARS-CoV-2 的小液滴中是使导致 COVID-19 的病毒失活的一种机制。