Suppr超能文献

离子溶解在 SARS-CoV-2 金属和金属氧化物表面失活中的作用。

The role of ion dissolution in metal and metal oxide surface inactivation of SARS-CoV-2.

机构信息

Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, Fife, United Kingdom.

SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, United Kingdom.

出版信息

Appl Environ Microbiol. 2024 Feb 21;90(2):e0155323. doi: 10.1128/aem.01553-23. Epub 2024 Jan 23.

Abstract

Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution . Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.

摘要

抗病毒表面涂层正在开发中,以防止公共空间中高流量接触表面的病毒病媒传播。铜的抗病毒特性已被广泛记录,但铜表面的抗病毒机制尚不完全清楚。我们筛选了一系列金属和金属氧化物表面,以研究其对严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)的抗病毒活性,SARS-CoV-2 是冠状病毒病(COVID-19)的病原体。铜和氧化铜表面表现出对 SARS-CoV-2 的优异抗病毒活性;然而,抗病毒活性的水平取决于用于递送病毒接种物的载体溶液的组成。我们证明,从测试表面释放到溶液中的铜离子可以介导病毒失活,表明存在铜离子溶解依赖性的抗病毒机制。然而,抗病毒活性的水平并不取决于释放到溶液中的铜离子的量。相反,我们的发现表明,病毒失活的程度取决于铜离子与病毒载体溶液中其他生物分子(例如蛋白质/代谢物)的络合程度,这些生物分子与病毒成分竞争。尽管使用组织培养衍生的病毒接种物来评估铜衍生的测试表面的抗病毒活性在实验上很方便,但我们提出,组织培养基中的高有机含量会降低与病毒相互作用的“未络合”铜离子的可用性,从而对病毒失活产生负面影响,从而影响表面的抗病毒性能。我们建议,实验室抗病毒表面测试应包括在生理相关的载体溶液中递送的病毒(当测试呼吸道病毒时为唾液或鼻分泌物),以准确预测在公共空间中部署时的实际表面抗病毒性能。

重要性评估测试表面的抗病毒活性的目的是确定在公共空间的高流量接触表面上部署时能够有效防止病媒传播的表面。实验室测试的常规方法是使用组织培养衍生的病毒接种物;然而,这项研究表明,测试含铜表面的抗病毒性能取决于递送病毒接种物到测试表面的载体溶液的组成。因此,我们建议实验室表面测试应包括在生理相关的载体溶液中递送的病毒,以准确预测在公共空间中实际测试表面的性能。了解病毒失活的机制是未来合理设计改进的抗病毒表面的关键。在这里,我们证明铜表面将铜离子释放到含有 SARS-CoV-2 的小液滴中是使导致 COVID-19 的病毒失活的一种机制。

相似文献

1
The role of ion dissolution in metal and metal oxide surface inactivation of SARS-CoV-2.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0155323. doi: 10.1128/aem.01553-23. Epub 2024 Jan 23.
2
Application of Copper Iodide Nanoparticle-Doped Film and Fabric To Inactivate SARS-CoV-2 via the Virucidal Activity of Cuprous Ions (Cu).
Appl Environ Microbiol. 2021 Nov 24;87(24):e0182421. doi: 10.1128/AEM.01824-21. Epub 2021 Oct 6.
3
Assessment of Antiviral Coatings for High-Touch Surfaces by Using Human Coronaviruses HCoV-229E and SARS-CoV-2.
Appl Environ Microbiol. 2021 Sep 10;87(19):e0109821. doi: 10.1128/AEM.01098-21.
5
Increasing Temperature and Relative Humidity Accelerates Inactivation of SARS-CoV-2 on Surfaces.
mSphere. 2020 Jul 1;5(4):e00441-20. doi: 10.1128/mSphere.00441-20.
6
Factors Impacting Persistence of Phi6 Bacteriophage, an Enveloped Virus Surrogate, on Fomite Surfaces.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0255221. doi: 10.1128/aem.02552-21. Epub 2022 Mar 14.
7
A realistic approach for evaluating antimicrobial surfaces for dry surface exposure scenarios.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0115024. doi: 10.1128/aem.01150-24. Epub 2024 Oct 4.
8
Efficacy of copper blend coatings in reducing SARS-CoV-2 contamination.
Biometals. 2023 Feb;36(1):217-225. doi: 10.1007/s10534-022-00473-7. Epub 2022 Dec 7.

引用本文的文献

1
Engineering copper and copper-based materials for a post-antibiotic era.
Front Bioeng Biotechnol. 2025 Aug 6;13:1644362. doi: 10.3389/fbioe.2025.1644362. eCollection 2025.

本文引用的文献

1
Antimicrobial mechanism of cuprous oxide (CuO) coatings.
J Colloid Interface Sci. 2023 Dec 15;652(Pt B):1867-1877. doi: 10.1016/j.jcis.2023.08.136. Epub 2023 Aug 26.
2
Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses.
Int J Mol Sci. 2023 Jun 22;24(13):10503. doi: 10.3390/ijms241310503.
3
Inactivation of SARS-CoV-2 and photocatalytic degradation by TiO photocatalyst coatings.
Sci Rep. 2022 Sep 26;12(1):16038. doi: 10.1038/s41598-022-20459-2.
4
Flexible, disposable photocatalytic plastic films for the destruction of viruses.
J Photochem Photobiol B. 2022 Oct;235:112551. doi: 10.1016/j.jphotobiol.2022.112551. Epub 2022 Aug 25.
5
Stability and transmissibility of SARS-CoV-2 in the environment.
J Med Virol. 2023 Jan;95(1):e28103. doi: 10.1002/jmv.28103. Epub 2022 Sep 7.
7
Microbial silver resistance mechanisms: recent developments.
World J Microbiol Biotechnol. 2022 Jul 12;38(9):158. doi: 10.1007/s11274-022-03341-1.
9
Copper as an antimicrobial agent: recent advances.
RSC Adv. 2021 May 19;11(30):18179-18186. doi: 10.1039/d1ra02149d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验