Voros Jamie, Kravets Victoria, Smith Kieran, Clark Torin K
Ann and H.J. Smead Department of Aerospace Engineering Sciences, Boulder, CO, United States.
Front Neurosci. 2024 Jan 8;17:1274949. doi: 10.3389/fnins.2023.1274949. eCollection 2023.
Vestibular and visual information is used in determining spatial orientation. Existing computational models of orientation perception focus on the integration of visual and vestibular orientation information when both are available. It is well-known, and computational models capture, differences in spatial orientation perception with visual information or without (i.e., in the dark). For example, during earth vertical yaw rotation at constant angular velocity without visual information, humans perceive their rate of rotation to decay. However, during the same sustained rotation with visual information, humans can continue to more accurately perceive self-rotation. Prior to this study, there was no existing literature on human motion perception where visual information suddenly become available or unavailable during self-motion.
Via a well verified psychophysical task, we obtained perceptual reports of self-rotation during various profiles of Earth-vertical yaw rotation. The task involved transitions in the availability of visual information (and control conditions with visual information available throughout the motion or unavailable throughout).
We found that when visual orientation information suddenly became available, subjects gradually integrated the new visual information over ~10 seconds. In the opposite scenario (visual information suddenly removed), past visual information continued to impact subject perception of self-rotation for ~30 seconds. We present a novel computational model of orientation perception that is consistent with the experimental results presented in this study.
The gradual integration of sudden loss or gain of visual information is achieved via low pass filtering in the visual angular velocity sensory conflict pathway. In conclusion, humans gradually integrate sudden gain or loss of visual information into their existing perception of self-motion.
前庭和视觉信息用于确定空间方位。现有的方位感知计算模型聚焦于视觉和前庭方位信息均可用时二者的整合。众所周知,且计算模型也捕捉到了,有视觉信息与无视觉信息(即在黑暗中)时空间方位感知的差异。例如,在无视觉信息的情况下以恒定角速度进行地球垂直偏航旋转时,人类会感觉自己的旋转速度在衰减。然而,在有视觉信息的相同持续旋转过程中,人类能够更准确地持续感知自身旋转。在本研究之前,尚无关于人类运动感知的文献,即在自我运动过程中视觉信息突然可用或不可用的情况。
通过一项经过充分验证的心理物理学任务,我们获取了在各种地球垂直偏航旋转过程中自我旋转的感知报告。该任务涉及视觉信息可用性的转变(以及在整个运动过程中视觉信息始终可用或始终不可用的控制条件)。
我们发现,当视觉方位信息突然可用时,受试者会在约10秒的时间内逐渐整合新的视觉信息。在相反的情况下(视觉信息突然移除),过去的视觉信息会在约30秒的时间内继续影响受试者对自我旋转的感知。我们提出了一种新颖的方位感知计算模型,该模型与本研究中呈现的实验结果一致。
视觉信息的突然丢失或获取的逐渐整合是通过视觉角速度感觉冲突通路中的低通滤波实现的。总之,人类会将视觉信息的突然获取或丢失逐渐整合到他们现有的自我运动感知中。