Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts 02114.
Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts 02114.
J Neurosci. 2021 Apr 28;41(17):3879-3888. doi: 10.1523/JNEUROSCI.2204-20.2021. Epub 2021 Mar 17.
Gravity is a pervasive environmental stimulus, and accurate graviception is required for optimal spatial orientation and postural stability. The primary graviceptors are the vestibular organs, which include angular velocity (semicircular canals) and linear acceleration (otolith organs) sensors. Graviception is degraded in patients with vestibular damage, resulting in spatial misperception and imbalance. Since minimal therapy is available for these patients, substantial effort has focused on developing a vestibular prosthesis or vestibular implant (VI) that reproduces information normally provided by the canals (since reproducing otolith function is very challenging technically). Prior studies demonstrated that angular eye velocity responses could be driven by canal VI-mediated angular head velocity information, but it remains unknown whether a canal VI could improve spatial perception and posture since these behaviors require accurate estimates of angular head position in space relative to gravity. Here, we tested the hypothesis that a canal VI that transduces angular head velocity and provides this information to the brain via motion-modulated electrical stimulation of canal afferent nerves could improve the perception of angular head position relative to gravity in monkeys with severe vestibular damage. Using a subjective visual vertical task, we found that normal female monkeys accurately sensed the orientation of the head relative to gravity during dynamic tilts, that this ability was degraded following bilateral vestibular damage, and improved when the canal VI was used. These results demonstrate that a canal VI can improve graviception in vestibulopathic animals, suggesting that it could reduce the disabling perceptual and postural deficits experienced by patients with severe vestibular damage. Patients with vestibular damage experience impaired vision, spatial perception, and balance, symptoms that could potentially respond to a vestibular implant (VI). Anatomic features facilitate semicircular canal (angular velocity) prosthetics but inhibit approaches with the otolith (linear acceleration) organs, and canal VIs that sense angular head velocity can generate compensatory eye velocity responses in vestibulopathic subjects. Can the brain use canal VI head velocity information to improve estimates of head orientation (e.g., head position relative to gravity), which is a prerequisite for accurate spatial perception and posture? Here we show that a canal VI can improve the perception of head orientation in vestibulopathic monkeys, results that are highly significant because they suggest that VIs mimicking canal function can improve spatial orientation and balance in vestibulopathic patients.
重力是一种普遍存在的环境刺激,准确的重觉是进行最佳空间定位和姿势稳定的必要条件。主要的重觉感受器是前庭器官,包括角速度(半规管)和线性加速度(耳石器官)传感器。前庭损伤患者的重觉会下降,导致空间感知和平衡失调。由于这些患者几乎没有治疗方法,因此大量的努力集中在开发一种前庭假体或前庭植入物(VI)上,该假体或植入物可以复制通常由管道提供的信息(因为从技术上讲,复制耳石功能非常具有挑战性)。先前的研究表明,通过 VI 介导的头角速度信息,可以驱动眼球的角速度响应,但是,尚不清楚 VI 是否可以改善空间感知和姿势,因为这些行为需要相对于重力准确估计头在空间中的角位置。在这里,我们测试了以下假设:一种可以转换头角速度并通过对前庭传入神经进行运动调制的电刺激将此信息传递给大脑的 VI,可以改善严重前庭损伤的猴子对相对于重力的头角位置的感知。使用主观视觉垂直任务,我们发现正常雌性猴子在动态倾斜过程中准确地感知头部相对于重力的方向,在双侧前庭损伤后,这种能力下降,而使用 VI 时则有所改善。这些结果表明,VI 可以改善前庭病变动物的重觉,这表明它可以减轻严重前庭损伤患者所经历的使人丧失能力的感知和姿势缺陷。前庭损伤患者会出现视力,空间感知和平衡受损的症状,这些症状可能会对前庭植入物(VI)产生反应。解剖特征有利于半规管(角速度)修复术,但会抑制耳石(线性加速度)器官的方法,并且可以感知头角速度的 VI 可以在前庭病变患者中产生代偿性的眼速度响应。大脑是否可以使用 VI 头速度信息来改善对头方向(例如相对于重力的头位置)的估计,这是准确的空间感知和姿势的前提?在这里,我们表明 VI 可以改善前庭病变猴子对头方向的感知,这些结果非常重要,因为它们表明模仿管功能的 VI 可以改善前庭病变患者的空间定向和平衡。