Kanwal Jagmeet S, Sanghera Bhavjeet, Dabbi Riya, Glasgow Eric
bioRxiv. 2024 Jan 1:2023.12.31.573780. doi: 10.1101/2023.12.31.573780.
Movement requires maneuvers that generate thrust to either make turns or move the body forward in physical space. The computational space for perpetually controlling the relative position of every point on the body surface can be vast. We hypothesize the evolution of efficient design for movement that minimizes active (neural) control by leveraging the passive (reactive) forces between the body and the surrounding medium at play. To test our hypothesis, we investigate the presence of stereotypical postures during free-swimming in adult zebrafish, . We perform markerless tracking using DeepLabCut, a deep learning pose estimation toolkit, to track geometric relationships between body parts. To identify putative clusters of postural configurations obtained from twelve freely behaving zebrafish, we use unsupervised multivariate time-series analysis (B-SOiD machine learning software). When applied to single individuals, this method reveals a best-fit for 36 to 50 clusters in contrast 86 clusters for data pooled from all 12 animals. The centroids of each cluster obtained over 14,000 sequential frames recorded for a single fish represent an classification into relatively stable "target body postures" and inter-pose "transitional postures" that lead to and away from a target pose. We use multidimensional scaling of mean parameter values for each cluster to map cluster-centroids within two dimensions of postural space. From a visual analysis, we condense neighboring postural variants into 15 superclusters or core body configurations. We develop a nomenclature specifying the anteroposterior level/s (upper, mid and lower) and degree of bending. Our results suggest that constraining bends to mainly three levels in adult zebrafish preempts the neck, fore- and hindlimb design for maneuverability in land vertebrates.
运动需要通过产生推力的动作来转弯或在物理空间中向前移动身体。持续控制身体表面每个点的相对位置所需的计算量可能非常大。我们假设运动的高效设计是通过利用身体与周围介质之间的被动(反应性)力来尽量减少主动(神经)控制而进化而来的。为了验证我们的假设,我们研究了成年斑马鱼自由游动时是否存在刻板姿势。我们使用深度学习姿态估计工具包DeepLabCut进行无标记跟踪,以跟踪身体各部位之间的几何关系。为了识别从12条自由活动的斑马鱼获得的姿势配置的假定聚类,我们使用无监督多变量时间序列分析(B-SOiD机器学习软件)。当应用于单个个体时,该方法显示最适合36至50个聚类,而将所有12只动物的数据合并后则为86个聚类。为一条鱼记录的14000多个连续帧中获得的每个聚类的质心代表了一种分类,分为相对稳定的“目标身体姿势”和导致或远离目标姿势的姿势间“过渡姿势”。我们使用每个聚类的平均参数值的多维缩放来在姿势空间的二维中映射聚类质心。通过视觉分析,我们将相邻的姿势变体浓缩为15个超级聚类或核心身体配置。我们开发了一种命名法,指定前后水平(上、中、下)和弯曲程度。我们的结果表明,成年斑马鱼将弯曲主要限制在三个水平,这为陆地脊椎动物的颈部、前肢和后肢的机动性设计奠定了基础。