Kanwal Jagmeet S, Sanghera Bhavjeet S, Dabbi Riya, Glasgow Eric
Department of Neurology, Georgetown University Medical Center, Washington, DC, USA.
Department of Psychology, University of Miami, Coral Gables, Florida, USA.
Brain Behav Evol. 2025;100(2):93-111. doi: 10.1159/000543081. Epub 2024 Dec 16.
Movement requires maneuvers that generate thrust to either make turns or move the body forward in physical space. The computational space for perpetually controlling the relative position of every point on the body surface can be vast. We hypothesize the evolution of efficient design for movement that minimizes active (neural) control by leveraging the passive (reactive) forces between the body and the surrounding medium at play. To test our hypothesis, we investigate the presence of stereotypical postures during free-swimming in adult zebrafish, Danio rerio.
We perform markerless tracking using DeepLabCut (DLC), a deep learning pose-estimation toolkit, to track geometric relationships between body parts. We identify putative clusters of postural configurations from twelve freely behaving zebrafish, using unsupervised multivariate time-series analysis (B-SOiD machine-learning software) and of distances and angles between body segments extracted from DLC data.
When applied to single individuals, DLC-extracted data reveal a best-fit for 36-50 clusters in contrast to 86 clusters for data pooled from all 12 animals. The centroids of each cluster obtained over 14,000 sequential frames represent an a priori classification into relatively stable "target body postures." We use multidimensional scaling of mean parameter values for each cluster to map cluster centroids within two dimensions of postural space. From a posteriori visual analysis, we condense neighboring postural variants into 15 superclusters or core body configurations. We develop a nomenclature specifying the anteroposterior level/s (upper, mid, and lower) and degree of bending.
Our results suggest that constraining bends to mainly three anteroposterior levels in fish paved the way for the evolution of a neck, fore- and hind limb design for maneuverability in land vertebrates.
运动需要通过产生推力的动作来转弯或在物理空间中向前移动身体。持续控制身体表面每个点的相对位置所需的计算量可能非常大。我们假设运动的高效设计是通过利用身体与周围介质之间的被动(反应性)力来最小化主动(神经)控制而进化而来的。为了验证我们的假设,我们研究了成年斑马鱼(Danio rerio)在自由游动时是否存在刻板姿势。
我们使用深度学习姿态估计工具包DeepLabCut(DLC)进行无标记跟踪,以追踪身体各部分之间的几何关系。我们使用无监督多变量时间序列分析(B-SOiD机器学习软件)以及从DLC数据中提取的身体节段之间的距离和角度,从12条自由行为的斑马鱼中识别出假定的姿势配置集群。
当应用于单个个体时,DLC提取的数据显示最适合36 - 50个集群,而将所有12只动物的数据汇总后则为86个集群。在14000个连续帧上获得的每个集群的质心代表了一种先验分类,即相对稳定的“目标身体姿势”。我们使用每个集群平均参数值的多维缩放来在姿势空间的二维中映射集群质心。通过事后视觉分析,我们将相邻的姿势变体浓缩为15个超集群或核心身体配置。我们制定了一种命名法,指定前后水平(上、中、下)和弯曲程度。
我们的结果表明,将鱼类的弯曲主要限制在三个前后水平为陆地脊椎动物中颈部、前肢和后肢机动性设计的进化铺平了道路。