Smith Kyle P, Chakravarthy Srinivas, Rahi Amit, Chakraborty Manas, Vosberg Kristen M, Tonelli Marco, Plach Maximilian G, Grigorescu Arabela A, Curtis Joseph E, Varma Dileep
Department of Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
Present Address, Xylia Therapeutics, Waltham, MA, 02451, USA.
bioRxiv. 2024 Jan 3:2024.01.03.573975. doi: 10.1101/2024.01.03.573975.
Cdt1 is a protein critical for DNA replication licensing and is well-established to be a binding partner of the minichromosome maintenance (MCM) complex. Cdt1 has also been demonstrated to have an emerging, "moonlighting" role at the kinetochore via direct binding to microtubules and to the Ndc80 complex. However, it is not known how the structure and conformations of Cdt1 could allow for these multiple, completely unique sets of protein complexes. And while there exist multiple robust methods to study entirely folded or entirely unfolded proteins, structure-function studies of combined, mixed folded/disordered proteins remain challenging. It this work, we employ multiple orthogonal biophysical and computational techniques to provide a detailed structural characterization of human Cdt1 92-546. DSF and DSCD show both folded winged helix (WH) domains of Cdt1 are relatively unstable. CD and NMR show the N-terminal and the linker regions are intrinsically disordered. Using DLS and SEC-MALS, we show that Cdt1 is polydisperse, monomeric at high concentrations, and without any apparent inter-molecular self-association. SEC-SAXS of the monomer in solution enabled computational modeling of the protein . Using the program SASSIE, we performed rigid body Monte Carlo simulations to generate a conformational ensemble. Using experimental SAXS data, we filtered for conformations which did and did not fit our data. We observe that neither fully extended nor extremely compact Cdt1 conformations are consistent with our SAXS data. The best fit models have the N-terminal and linker regions extended into solution and the two folded domains close to each other in apparent "folded over" conformations. The best fit Cdt1 conformations are consistent with a function as a scaffold protein which may be sterically blocked without the presence of binding partners. Our studies also provide a template for combining experimental and computational biophysical techniques to study mixed-folded proteins.
Cdt1是一种对DNA复制许可至关重要的蛋白质,并且已被充分证实是微型染色体维持(MCM)复合物的结合伴侣。Cdt1还被证明通过直接与微管和Ndc80复合物结合,在动粒处发挥新出现的“兼职”作用。然而,尚不清楚Cdt1的结构和构象如何能够容纳这些多个完全独特的蛋白质复合物组。虽然存在多种强大的方法来研究完全折叠或完全未折叠的蛋白质,但对折叠/无序混合的蛋白质进行结构-功能研究仍然具有挑战性。在这项工作中,我们采用多种正交的生物物理和计算技术,对人Cdt1 92 - 546进行详细的结构表征。差示扫描荧光法(DSF)和差示扫描量热法(DSCD)表明,Cdt1的两个折叠的翼状螺旋(WH)结构域相对不稳定。圆二色光谱(CD)和核磁共振(NMR)表明,N端和连接区是内在无序的。使用动态光散射(DLS)和多角度激光光散射尺寸排阻色谱(SEC - MALS),我们表明Cdt1是多分散的,在高浓度下为单体,并且没有任何明显的分子间自缔合。溶液中单体的小角X射线散射(SEC - SAXS)能够对该蛋白质进行计算建模。使用SASSIE程序,我们进行了刚体蒙特卡罗模拟以生成构象集合。使用实验性的SAXS数据,我们筛选出符合和不符合我们数据的构象。我们观察到,完全伸展或极其紧凑的Cdt1构象均与我们的SAXS数据不一致。最佳拟合模型的N端和连接区延伸到溶液中,两个折叠结构域以明显的“折叠”构象彼此靠近。最佳拟合的Cdt1构象与作为支架蛋白的功能一致,在没有结合伴侣的情况下可能会受到空间位阻。我们的研究还为结合实验和计算生物物理技术来研究混合折叠蛋白提供了一个模板。