使用因果启发式神经网络进行治疗性扰动的组合预测。
Combinatorial prediction of therapeutic perturbations using causally-inspired neural networks.
作者信息
Gonzalez Guadalupe, Lin Xiang, Herath Isuru, Veselkov Kirill, Bronstein Michael, Zitnik Marinka
机构信息
Imperial College London, London, UK.
Prescient Design, Genentech, South San Francisco, CA, USA.
出版信息
bioRxiv. 2025 Jan 28:2024.01.03.573985. doi: 10.1101/2024.01.03.573985.
Phenotype-driven approaches identify disease-counteracting compounds by analyzing the phenotypic signatures that distinguish diseased from healthy states. These approaches can guide the discovery of targeted perturbations, including small-molecule drugs and genetic interventions, that modulate disease phenotypes toward healthier states. Here, we introduce PDGrapher, a causally inspired graph neural network (GNN) designed to predict combinatorial perturbagens (sets of therapeutic targets) capable of reversing disease phenotypes. Unlike methods that learn how perturbations alter phenotypes, PDGrapher solves the inverse problem of directly predicting the perturbagens needed to achieve a desired response. PDGrapher is a GNN that embeds disease cell states into gene regulatory or protein-protein interaction networks, learns a latent representation of these states, and identifies the optimal combinatorial perturbations that most effectively shift the diseased state toward the desired treated state within that latent space. In experiments in nine cell lines with chemical perturbations, PDGrapher identified effective per-turbagens in up to 13.33% more test samples than competing methods and achieved a normalized discounted cumulative gain of up to 0.12 higher to classify therapeutic targets. It also demonstrated competitive performance on ten genetic perturbation datasets. A key advantage of PDGrapher is its direct prediction paradigm, in contrast to the indirect and computationally intensive models traditionally employed in phenotype-driven research. This approach accelerates training by up to 25 times compared to existing methods. PDGrapher provides a fast approach for identifying therapeutic perturbations and advancing phenotype-driven drug discovery.
表型驱动方法通过分析区分疾病状态与健康状态的表型特征来识别疾病对抗化合物。这些方法可以指导发现有针对性的扰动,包括小分子药物和基因干预,从而将疾病表型调节至更健康的状态。在此,我们介绍PDGrapher,这是一种受因果关系启发的图神经网络(GNN),旨在预测能够逆转疾病表型的组合扰动因素(治疗靶点集)。与学习扰动如何改变表型的方法不同,PDGrapher解决的是直接预测实现期望反应所需扰动因素的逆问题。PDGrapher是一种GNN,它将疾病细胞状态嵌入基因调控或蛋白质-蛋白质相互作用网络,学习这些状态的潜在表示,并识别在该潜在空间内最有效地将疾病状态转变为期望治疗状态的最佳组合扰动。在九个细胞系中进行化学扰动的实验中,与竞争方法相比,PDGrapher在多达13.33%的测试样本中识别出了有效的扰动因素,并且在对治疗靶点进行分类时,归一化折损累计增益高达0.12。它在十个基因扰动数据集上也表现出了具有竞争力的性能。PDGrapher的一个关键优势在于其直接预测范式,这与表型驱动研究中传统采用的间接且计算密集型模型形成对比。与现有方法相比,这种方法将训练速度提高了多达25倍。PDGrapher为识别治疗性扰动和推进表型驱动的药物发现提供了一种快速方法。