Suppr超能文献

多模态单细胞分析的最佳实践。

Best practices for single-cell analysis across modalities.

机构信息

Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany.

Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany.

出版信息

Nat Rev Genet. 2023 Aug;24(8):550-572. doi: 10.1038/s41576-023-00586-w. Epub 2023 Mar 31.

Abstract

Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.

摘要

近年来,单细胞技术的进步使得能够在不同模态和位置上对细胞进行高通量分子谱分析。现在,单细胞转录组学数据可以补充染色质可及性、表面蛋白表达、适应性免疫受体库分析和空间信息。随着不同模态的单细胞数据的日益普及,激发了开发新的计算方法的动力,以帮助分析人员获得生物学见解。随着该领域的发展,越来越难以在众多工具和分析步骤中进行导航。在这里,我们总结了跨模态的单模态和多模态单细胞分析的独立基准测试研究,以针对最常见的分析步骤提出全面的最佳实践工作流程。在没有独立基准测试的情况下,我们将回顾和对比流行的方法。我们的文章为单细胞(多)组学分析领域的新手提供了一个切入点,并指导高级用户了解最新的最佳实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02c1/10066026/04dfe9dee669/41576_2023_586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验