Suppr超能文献

学习聚合多尺度上下文用于遥感图像中的实例分割

Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images.

作者信息

Liu Ye, Li Huifang, Hu Chao, Luo Shuang, Luo Yan, Chen Chang Wen

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):595-609. doi: 10.1109/TNNLS.2023.3336563. Epub 2025 Jan 7.

Abstract

The task of instance segmentation in remote sensing images, aiming at performing per-pixel labeling of objects at the instance level, is of great importance for various civil applications. Despite previous successes, most existing instance segmentation methods designed for natural images encounter sharp performance degradations when they are directly applied to top-view remote sensing images. Through careful analysis, we observe that the challenges mainly come from the lack of discriminative object features due to severe scale variations, low contrasts, and clustered distributions. In order to address these problems, a novel context aggregation network (CATNet) is proposed to improve the feature extraction process. The proposed model exploits three lightweight plug-and-play modules, namely, dense feature pyramid network (DenseFPN), spatial context pyramid (SCP), and hierarchical region of interest extractor (HRoIE), to aggregate global visual context at feature, spatial, and instance domains, respectively. DenseFPN is a multi-scale feature propagation module that establishes more flexible information flows by adopting interlevel residual connections, cross-level dense connections, and feature reweighting strategy. Leveraging the attention mechanism, SCP further augments the features by aggregating global spatial context into local regions. For each instance, HRoIE adaptively generates RoI features for different downstream tasks. Extensive evaluations of the proposed scheme on iSAID, DIOR, NWPU VHR-10, and HRSID datasets demonstrate that the proposed approach outperforms state-of-the-arts under similar computational costs. Source code and pretrained models are available at https://github.com/yeliudev/CATNet.

摘要

遥感图像中的实例分割任务旨在对实例级别的对象进行逐像素标注,对于各种民用应用具有重要意义。尽管此前取得了成功,但大多数为自然图像设计的现有实例分割方法在直接应用于俯视遥感图像时,性能会急剧下降。通过仔细分析,我们发现挑战主要源于严重的尺度变化、低对比度和聚类分布导致的缺乏判别性对象特征。为了解决这些问题,我们提出了一种新颖的上下文聚合网络(CATNet)来改进特征提取过程。所提出的模型利用了三个轻量级即插即用模块,即密集特征金字塔网络(DenseFPN)、空间上下文金字塔(SCP)和分层感兴趣区域提取器(HRoIE),分别在特征、空间和实例域聚合全局视觉上下文。DenseFPN是一个多尺度特征传播模块,通过采用层间残差连接、跨层密集连接和特征重新加权策略来建立更灵活的信息流。利用注意力机制,SCP通过将全局空间上下文聚合到局部区域进一步增强特征。对于每个实例,HRoIE为不同的下游任务自适应地生成感兴趣区域(RoI)特征。在iSAID、DIOR、NWPU VHR - 10和HRSID数据集上对所提出方案进行的广泛评估表明,在类似的计算成本下,所提出的方法优于现有技术。源代码和预训练模型可在https://github.com/yeliudev/CATNet获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验