Suppr超能文献

PMFSNet:用于轻量级医学图像分割的极化多尺度特征自注意力网络

PMFSNet: Polarized multi-scale feature self-attention network for lightweight medical image segmentation.

作者信息

Zhong Jiahui, Tian Wenhong, Xie Yuanlun, Liu Zhijia, Ou Jie, Tian Taoran, Zhang Lei

机构信息

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.

School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610106, China.

出版信息

Comput Methods Programs Biomed. 2025 Apr;261:108611. doi: 10.1016/j.cmpb.2025.108611. Epub 2025 Jan 25.

Abstract

BACKGROUND AND OBJECTIVES

Current state-of-the-art medical image segmentation methods prioritize precision but often at the expense of increased computational demands and larger model sizes. Applying these large-scale models to the relatively limited scale of medical image datasets tends to induce redundant computation, complicating the process without the necessary benefits. These approaches increase complexity and pose challenges for integrating and deploying lightweight models on edge devices. For instance, recent transformer-based models have excelled in 2D and 3D medical image segmentation due to their extensive receptive fields and high parameter count. However, their effectiveness comes with the risk of overfitting when applied to small datasets. It often neglects the vital inductive biases of Convolutional Neural Networks (CNNs), essential for local feature representation.

METHODS

In this work, we propose PMFSNet, a novel medical imaging segmentation model that effectively balances global and local feature processing while avoiding the computational redundancy typical of larger models. PMFSNet streamlines the UNet-based hierarchical structure and simplifies the self-attention mechanism's computational complexity, making it suitable for lightweight applications. It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.

RESULTS

The extensive comprehensive results demonstrate that our method achieves superior performance in various segmentation tasks on different data scales even with fewer than a million parameters. Results reveal that our PMFSNet achieves IoU of 84.68%, 82.02%, 78.82%, and 76.48% on public datasets of 3D CBCT Tooth, ovarian tumors ultrasound (MMOTU), skin lesions dermoscopy (ISIC 2018), and gastrointestinal polyp (Kvasir SEG), and yields DSC of 78.29%, 77.45%, and 78.04% on three retinal vessel segmentation datasets, DRIVE, STARE, and CHASE-DB1, respectively.

CONCLUSION

Our proposed model exhibits competitive performance across various datasets, accomplishing this with significantly fewer model parameters and inference time, demonstrating its value in model integration and deployment. It strikes an optimal compromise between efficiency and performance and can be a highly efficient solution for medical image analysis in resource-constrained clinical environments. The source code is available at https://github.com/yykzjh/PMFSNet.

摘要

背景与目标

当前最先进的医学图像分割方法优先考虑精度,但往往以增加计算需求和更大的模型规模为代价。将这些大规模模型应用于相对有限规模的医学图像数据集往往会导致冗余计算,使过程复杂化且没有必要的益处。这些方法增加了复杂性,并对在边缘设备上集成和部署轻量级模型构成挑战。例如,最近基于Transformer的模型由于其广泛的感受野和高参数数量,在二维和三维医学图像分割方面表现出色。然而,当应用于小数据集时,它们的有效性伴随着过拟合的风险。它常常忽略了卷积神经网络(CNN)对于局部特征表示至关重要的重要归纳偏差。

方法

在这项工作中,我们提出了PMFSNet,这是一种新颖的医学成像分割模型,它有效地平衡了全局和局部特征处理,同时避免了大型模型典型的计算冗余。PMFSNet简化了基于U-Net的层次结构,并简化了自注意力机制的计算复杂性,使其适用于轻量级应用。它包含一个即插即用的PMFS模块,这是一个基于注意力机制的多尺度特征增强模块,用于捕获长期依赖性。

结果

广泛的综合结果表明,即使参数少于一百万,我们的方法在不同数据规模的各种分割任务中也能实现卓越的性能。结果显示,我们的PMFSNet在三维CBCT牙齿、卵巢肿瘤超声(MMOTU)、皮肤病变皮肤镜检查(ISIC 2018)和胃肠道息肉(Kvasir SEG)的公共数据集上分别实现了84.68%、82.02%、78.82%和76.48%的交并比(IoU),在三个视网膜血管分割数据集DRIVE、STARE和CHASE-DB1上分别产生了78.29%、77.45%和78.04%的Dice相似系数(DSC)。

结论

我们提出的模型在各种数据集上都表现出有竞争力的性能,通过显著更少的模型参数和推理时间实现了这一点,证明了其在模型集成和部署中的价值。它在效率和性能之间取得了最佳平衡,对于资源受限的临床环境中的医学图像分析可能是一种高效的解决方案。源代码可在https://github.com/yykzjh/PMFSNet获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验