Suppr超能文献

多任务级联卷积神经网络用于甲状腺结节的自动检测和识别。

Multitask Cascade Convolution Neural Networks for Automatic Thyroid Nodule Detection and Recognition.

出版信息

IEEE J Biomed Health Inform. 2019 May;23(3):1215-1224. doi: 10.1109/JBHI.2018.2852718. Epub 2018 Jul 3.

Abstract

Thyroid ultrasonography is a widely used clinical technique for nodule diagnosis in thyroid regions. However, it remains difficult to detect and recognize the nodules due to low contrast, high noise, and diverse appearance of nodules. In today's clinical practice, senior doctors could pinpoint nodules by analyzing global context features, local geometry structure, and intensity changes, which would require rich clinical experience accumulated from hundreds and thousands of nodule case studies. To alleviate doctors' tremendous labor in the diagnosis procedure, we advocate a machine learning approach to the detection and recognition tasks in this paper. In particular, we develop a multitask cascade convolution neural network (MC-CNN) framework to exploit the context information of thyroid nodules. It may be noted that our framework is built upon a large number of clinically confirmed thyroid ultrasound images with accurate and detailed ground truth labels. Other key advantages of our framework result from a multitask cascade architecture, two stages of carefully designed deep convolution networks in order to detect and recognize thyroid nodules in a pyramidal fashion, and capturing various intrinsic features in a global-to-local way. Within our framework, the potential regions of interest after initial detection are further fed to the spatial pyramid augmented CNNs to embed multiscale discriminative information for fine-grained thyroid recognition. Experimental results on 4309 clinical ultrasound images have indicated that our MC-CNN is accurate and effective for both thyroid nodules detection and recognition. For the correct diagnosis rate of malignant and benign thyroid nodules, its mean Average Precision (mAP) performance can achieve up to [Formula: see text] accuracy, which outperforms the common CNNs by [Formula: see text] on average. In addition, we conduct rigorous user studies to confirm that our MC-CNN outperforms experienced doctors, yet only consuming roughly [Formula: see text] ( 1/48) of doctors' examination time on average. Therefore, the accuracy and efficiency of our new method exhibit its great potential in clinical applications.

摘要

甲状腺超声检查是一种广泛应用于甲状腺区域结节诊断的临床技术。然而,由于对比度低、噪声高以及结节形态多样,仍然难以检测和识别结节。在当今的临床实践中,资深医生可以通过分析全局上下文特征、局部几何结构和强度变化来精确定位结节,这需要从数百个甚至数千个结节病例研究中积累丰富的临床经验。为了减轻医生在诊断过程中的巨大工作量,我们提倡在本文的检测和识别任务中采用机器学习方法。特别是,我们开发了一种多任务级联卷积神经网络(MC-CNN)框架来利用甲状腺结节的上下文信息。需要指出的是,我们的框架是基于大量经过临床证实的甲状腺超声图像构建的,这些图像具有准确和详细的地面真实标签。我们的框架的其他关键优势来自于多任务级联架构、两个精心设计的深度卷积网络阶段,以便以金字塔式的方式检测和识别甲状腺结节,并以全局到局部的方式捕获各种内在特征。在我们的框架中,初步检测后的潜在感兴趣区域将进一步输入到空间金字塔增强 CNN 中,以嵌入用于精细甲状腺识别的多尺度鉴别信息。在 4309 个临床超声图像上的实验结果表明,我们的 MC-CNN 对甲状腺结节的检测和识别既准确又有效。对于恶性和良性甲状腺结节的正确诊断率,其平均精度(mAP)性能可达到[Formula: see text]的准确率,比常见的 CNN 平均高出[Formula: see text]。此外,我们进行了严格的用户研究,以确认我们的 MC-CNN 优于有经验的医生,但平均只消耗医生检查时间的大约[Formula: see text](1/48)。因此,我们的新方法的准确性和效率在临床应用中显示出了巨大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验