Maini Lucrezia, Genovés Vicente, Furrer Roman, Cesarovic Nikola, Hierold Christofer, Roman Cosmin
Micro- and Nanosystems, Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland.
Translational Cardiovascular Technology, Department of Health Science and Technology, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland.
Microsyst Nanoeng. 2024 Jan 17;10:8. doi: 10.1038/s41378-023-00632-x. eCollection 2024.
Wireless medical sensors typically utilize electromagnetic coupling or ultrasound for energy transfer and sensor interrogation. Energy transfer and management is a complex aspect that often limits the applicability of implantable sensor systems. In this work, we report a new passive temperature sensing scheme based on an acoustic metamaterial made of silicon embedded in a polydimethylsiloxane matrix. Compared to other approaches, this concept is implemented without additional electrical components in situ or the need for a customized receiving unit. A standard ultrasonic transducer is used for this demonstration to directly excite and collect the reflected signal. The metamaterial resonates at a frequency close to a typical medical value (5 MHz) and exhibits a high-quality factor. Combining the design features of the metamaterial with the high-temperature sensitivity of the polydimethylsiloxane matrix, we achieve a temperature resolution of 30 mK. This value is below the current standard resolution required in infrared thermometry for monitoring postoperative complications (0.1 K). We fabricated, simulated, in vitro tested, and compared three acoustic sensor designs in the 29-43 °C (~302-316 K) temperature range. With this concept, we demonstrate how our passive metamaterial sensor can open the way toward new zero-power smart medical implant concepts based on acoustic interrogation.
无线医疗传感器通常利用电磁耦合或超声进行能量传输和传感器询问。能量传输和管理是一个复杂的方面,常常限制了可植入传感器系统的适用性。在这项工作中,我们报告了一种基于嵌入聚二甲基硅氧烷基质中的硅制成的声学超材料的新型无源温度传感方案。与其他方法相比,该概念的实现无需额外的原位电子元件,也无需定制的接收单元。本演示使用标准超声换能器直接激发并收集反射信号。该超材料在接近典型医学值(5 MHz)的频率下共振,并具有高品质因数。将超材料的设计特性与聚二甲基硅氧烷基质的高温度敏感性相结合,我们实现了30 mK的温度分辨率。该值低于目前红外测温法监测术后并发症所需的标准分辨率(0.1 K)。我们在29-43 °C(~302-316 K)温度范围内制作、模拟、进行了体外测试并比较了三种声学传感器设计。通过这一概念,我们展示了我们的无源超材料传感器如何能够为基于声学询问的新型零功耗智能医疗植入概念开辟道路。