Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
J Infect Dis. 2024 Mar 14;229(3):813-823. doi: 10.1093/infdis/jiae025.
Tuberculosis (TB) treatment-related adverse drug reactions (TB-ADRs) can negatively affect adherence and treatment success rates.
We developed prediction models for TB-ADRs, considering participants with drug-susceptible pulmonary TB who initiated standard TB therapy. TB-ADRs were determined by the physician attending the participant, assessing causality to TB drugs, the affected organ system, and grade. Potential baseline predictors of TB-ADR included concomitant medication (CM) use, human immunodeficiency virus (HIV) status, glycated hemoglobin (HbA1c), age, body mass index (BMI), sex, substance use, and TB drug metabolism variables (NAT2 acetylator profiles). The models were developed through bootstrapped backward selection. Cox regression was used to evaluate TB-ADR risk.
There were 156 TB-ADRs among 102 of the 945 (11%) participants included. Most TB-ADRs were hepatic (n = 82 [53%]), of moderate severity (grade 2; n = 121 [78%]), and occurred in NAT2 slow acetylators (n = 62 [61%]). The main prediction model included CM use, HbA1c, alcohol use, HIV seropositivity, BMI, and age, with robust performance (c-statistic = 0.79 [95% confidence interval {CI}, .74-.83) and fit (optimism-corrected slope and intercept of -0.09 and 0.94, respectively). An alternative model replacing BMI with NAT2 had similar performance. HIV seropositivity (hazard ratio [HR], 2.68 [95% CI, 1.75-4.09]) and CM use (HR, 5.26 [95% CI, 2.63-10.52]) increased TB-ADR risk.
The models, with clinical variables and with NAT2, were highly predictive of TB-ADRs.
结核病(TB)治疗相关药物不良反应(TB-ADR)可能会对治疗的依从性和成功率产生负面影响。
我们开发了预测 TB-ADR 的模型,纳入了开始接受标准 TB 治疗的药物敏感性肺结核患者。TB-ADR 由治疗患者的医生根据药物与 TB 的因果关系、受影响的器官系统和严重程度来确定。TB-ADR 的潜在基线预测因素包括合并用药(CM)、人类免疫缺陷病毒(HIV)状态、糖化血红蛋白(HbA1c)、年龄、体重指数(BMI)、性别、物质使用情况以及 TB 药物代谢变量(NAT2 乙酰化酶谱)。模型通过 bootstrap 向后选择进行开发。Cox 回归用于评估 TB-ADR 风险。
在纳入的 945 名患者中的 102 名(11%)患者中发生了 156 例 TB-ADR。大多数 TB-ADR 为肝脏(n=82 [53%]),中度严重程度(2 级;n=121 [78%]),NAT2 慢乙酰化酶患者中占比(n=62 [61%])。主要预测模型包括 CM 使用、HbA1c、饮酒、HIV 阳性、BMI 和年龄,具有良好的性能(C 统计量=0.79 [95%置信区间(CI),0.74-0.83])和拟合度(最优校正斜率和截距分别为-0.09 和 0.94)。替代模型用 NAT2 替代 BMI 也具有相似的性能。HIV 阳性(HR,2.68 [95%CI,1.75-4.09])和 CM 使用(HR,5.26 [95%CI,2.63-10.52])增加了 TB-ADR 的风险。
包含临床变量和 NAT2 的模型对 TB-ADR 具有高度预测性。