Suppr超能文献

基于高分辨率 CT 建立并验证 VBV 评分系统,用于评估肺磨玻璃结节。

Establishing and validation of the VBV score for assessing Lung ground-glass nodules based on high-resolution computed tomography.

机构信息

Department of Thoracic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.

Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China.

出版信息

J Cardiothorac Surg. 2024 Jan 23;19(1):17. doi: 10.1186/s13019-024-02487-3.

Abstract

BACKGROUND

The widespread utilization of chest High-resolution Computed Tomography (HRCT) has prompted detection of pulmonary ground-glass nodules (GGNs) in otherwise asymptomatic individuals. We aimed to establish a simple clinical risk score model for assessing GGNs based on HRCT.

METHODS

We retrospectively analyzed 574 GGNs in 574 patients undergoing HOOK-WIRE puncture and pulmonary nodule surgery from January 2014 to November 2018. Clinical characteristics and imaging features of the GGNs were assessed. We analyzed the differences between malignant and benign nodules using binary logistic regression analysis and constructed a simple risk score model, the VBV Score, for predicting the malignancy status of GGNs. Then, we validated this model via other 1200 GGNs in 1041 patients collected from three independent clinical centers in 2022.

RESULTS

For the exploratory phase of this study, out of the 574 GGNs, 481 were malignant and 93 were benign. Vacuole sign, air bronchogram, and intra-nodular vessel sign were important indicators of malignancy in GGNs. Then, we derived a VBV Score = vacuole sign + air bronchogram + intra-nodular vessel sign, to predict the malignancy of GGNs, with a sensitivity, specificity, and accuracy of 95.6%, 80.6%, and 93.2%, respectively. We also validated it on other 1200 GGNs, with a sensitivity, specificity, and accuracy of 96.0%, 82.6%, and 95.0%, respectively.

CONCLUSIONS

Vacuole sign, air bronchogram, and intra-nodular vessel sign were important indicators of malignancy in GGNs. VBV Score showed good sensitivity, specificity, and accuracy for differentiating benign and malignant pulmonary GGNs.

摘要

背景

高分辨率胸部计算机断层扫描(HRCT)的广泛应用促使人们在无症状个体中检测到肺部磨玻璃结节(GGN)。本研究旨在建立一种基于 HRCT 的评估 GGN 的简单临床风险评分模型。

方法

回顾性分析了 2014 年 1 月至 2018 年 11 月期间 574 例接受 HOOK-WIRE 穿刺和肺结节手术的患者的 574 个 GGN。评估了 GGN 的临床特征和影像学特征。我们使用二项逻辑回归分析比较了恶性和良性结节之间的差异,并构建了一个简单的风险评分模型,即 VBV 评分,用于预测 GGN 的恶性状态。然后,我们在 2022 年从三个独立临床中心收集的 1041 例患者的 1200 个 GGN 中验证了该模型。

结果

在本研究的探索性阶段,574 个 GGN 中 481 个为恶性,93 个为良性。空泡征、空气支气管征和结节内血管征是 GGN 恶性的重要指标。然后,我们得出了一个 VBV 评分=空泡征+空气支气管征+结节内血管征,用于预测 GGN 的恶性程度,其敏感性、特异性和准确性分别为 95.6%、80.6%和 93.2%。我们还在另外 1200 个 GGN 上进行了验证,其敏感性、特异性和准确性分别为 96.0%、82.6%和 95.0%。

结论

空泡征、空气支气管征和结节内血管征是 GGN 恶性的重要指标。VBV 评分在区分良恶性肺 GGN 方面具有良好的敏感性、特异性和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4df5/10804577/02111395e90c/13019_2024_2487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验