Suppr超能文献

基于拓扑特征的影像组学分析对预测肺磨玻璃结节恶性风险的价值:多中心研究

The Value of Topological Radiomics Analysis in Predicting Malignant Risk of Pulmonary Ground-Glass Nodules: A Multi-Center Study.

机构信息

Department of Respiratory and Critical Care Medicine, Medical School of Chinese People's Liberation Army, Beijing, China.

School of Medicine, Nankai University, Tianjin, China.

出版信息

Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241287089. doi: 10.1177/15330338241287089.

Abstract

BACKGROUND

Early detection and accurate differentiation of malignant ground-glass nodules (GGNs) in lung CT scans are crucial for the effective treatment of lung adenocarcinoma. However, existing imaging diagnostic methods often struggle to distinguish between benign and malignant GGNs in the early stages. This study aims to predict the malignancy risk of GGNs observed in lung CT scans by applying two radiomics methods: topological data analysis and texture analysis.

METHODS

A retrospective analysis was conducted on 3223 patients from two centers between January 2018 and June2023. The dataset was divided into training, testing, and validation sets to ensure robust model development and validation. We developed topological features applied to GGNs using radiomics analysis based on homology. This innovative approach emphasizes the integration of topological information, capturing complex geometric and spatial relationships within GGNs. By combining machine learning and deep learning algorithms, we established a predictive model that integrates clinical parameters, previous radiomics features, and topological radiomics features.

RESULTS

Incorporating topological radiomics into our model significantly enhanced the ability to distinguish between benign and malignant GGNs. The topological radiomics model achieved areas under the curve (AUC) of 0.85 and 0.862 in two independent validation sets, outperforming previous radiomics models. Furthermore, this model demonstrated higher sensitivity compared to models based solely on clinical parameters, with sensitivities of 80.7% in validation set 1 and 82.3% in validation set 2. The most comprehensive model, which combined clinical parameters, previous radiomics features, and topological radiomics features, achieved the highest AUC value of 0.879 across all datasets.

CONCLUSION

This study validates the potential of topological radiomics in improving the predictive performance for distinguishing between benign and malignant GGNs. By integrating topological features with previous radiomics and clinical parameters, our comprehensive model provides a more accurate and reliable basis for developing treatment strategies for patients with GGNs.

摘要

背景

在肺部 CT 扫描中早期发现和准确区分恶性磨玻璃结节(GGN)对于有效治疗肺腺癌至关重要。然而,现有的影像学诊断方法往往难以在早期区分良性和恶性 GGN。本研究旨在通过应用两种放射组学方法:拓扑数据分析和纹理分析,预测肺部 CT 扫描中观察到的 GGN 的恶性风险。

方法

对来自两个中心的 3223 名患者进行了回顾性分析,时间范围为 2018 年 1 月至 2023 年 6 月。数据集分为训练集、测试集和验证集,以确保稳健的模型开发和验证。我们使用放射组学分析开发了基于同调的 GGN 的拓扑特征。这种创新方法强调拓扑信息的集成,捕捉 GGN 内部的复杂几何和空间关系。通过结合机器学习和深度学习算法,我们建立了一个预测模型,该模型集成了临床参数、以前的放射组学特征和拓扑放射组学特征。

结果

将拓扑放射组学纳入我们的模型显著提高了区分良性和恶性 GGN 的能力。拓扑放射组学模型在两个独立的验证集中的曲线下面积(AUC)分别为 0.85 和 0.862,优于以前的放射组学模型。此外,该模型的敏感性高于仅基于临床参数的模型,在验证集 1 中的敏感性为 80.7%,在验证集 2 中的敏感性为 82.3%。在所有数据集上,结合临床参数、以前的放射组学特征和拓扑放射组学特征的最全面模型获得了最高的 AUC 值 0.879。

结论

本研究验证了拓扑放射组学在提高区分良性和恶性 GGN 预测性能方面的潜力。通过将拓扑特征与以前的放射组学和临床参数相结合,我们的综合模型为制定 GGN 患者的治疗策略提供了更准确和可靠的依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d41/11452904/803450399c0a/10.1177_15330338241287089-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验