Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
Department of Gastroenterology, Kawashima Hospital, 6-1 Kitasakoichiban-cho, Tokushima, 770-0011, Japan.
Sci Rep. 2024 Jan 23;14(1):2039. doi: 10.1038/s41598-024-52418-4.
No clinically relevant biomarker has been identified for predicting the response of esophageal squamous cell carcinoma (ESCC) to chemoradiotherapy (CRT). Herein, we established a CT-based radiomics model with artificial intelligence (AI) to predict the response and prognosis of CRT in ESCC. A total of 44 ESCC patients (stage I-IV) were enrolled in this study; training (n = 27) and validation (n = 17) cohorts. First, we extracted a total of 476 radiomics features from three-dimensional CT images of cancer lesions in training cohort, selected 110 features associated with the CRT response by ROC analysis (AUC ≥ 0.7) and identified 12 independent features, excluding correlated features by Pearson's correlation analysis (r ≥ 0.7). Based on the 12 features, we constructed 5 prediction models of different machine learning algorithms (Random Forest (RF), Ridge Regression, Naive Bayes, Support Vector Machine, and Artificial Neural Network models). Among those, the RF model showed the highest AUC in the training cohort (0.99 [95%CI 0.86-1.00]) as well as in the validation cohort (0.92 [95%CI 0.71-0.99]) to predict the CRT response. Additionally, Kaplan-Meyer analysis of the validation cohort and all the patient data showed significantly longer progression-free and overall survival in the high-prediction score group compared with the low-prediction score group in the RF model. Univariate and multivariate analyses revealed that the radiomics prediction score and lymph node metastasis were independent prognostic biomarkers for CRT of ESCC. In conclusion, we have developed a CT-based radiomics model using AI, which may have the potential to predict the CRT response as well as the prognosis for ESCC patients with non-invasiveness and cost-effectiveness.
目前尚无临床相关生物标志物可用于预测食管鳞状细胞癌(ESCC)对放化疗(CRT)的反应。在此,我们建立了一个基于 CT 的放射组学人工智能(AI)模型,以预测 ESCC 患者 CRT 的反应和预后。共有 44 例 ESCC 患者(I-IV 期)纳入本研究;训练(n=27)和验证(n=17)队列。首先,我们从训练队列中癌症病变的三维 CT 图像中提取了总共 476 个放射组学特征,通过 ROC 分析(AUC≥0.7)选择了 110 个与 CRT 反应相关的特征,并通过 Pearson 相关分析(r≥0.7)排除了相关特征,确定了 12 个独立特征。基于这 12 个特征,我们构建了 5 种不同机器学习算法(随机森林(RF)、岭回归、朴素贝叶斯、支持向量机和人工神经网络模型)的预测模型。其中,RF 模型在训练队列(0.99[95%CI 0.86-1.00])和验证队列(0.92[95%CI 0.71-0.99])中对 CRT 反应的预测均具有最高 AUC。此外,验证队列和所有患者数据的 Kaplan-Meier 分析显示,在 RF 模型中,高预测评分组的无进展生存期和总生存期明显长于低预测评分组。单因素和多因素分析表明,放射组学预测评分和淋巴结转移是 ESCC 患者 CRT 的独立预后生物标志物。总之,我们使用 AI 开发了一种基于 CT 的放射组学模型,该模型具有预测 ESCC 患者 CRT 反应和预后的潜力,具有非侵入性和成本效益。