Department of Neuropathology, Institute for Pathology, Hannover Medical School, Hannover, Germany.
Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Braunschweig, Germany.
Sci Rep. 2024 Jan 23;14(1):1965. doi: 10.1038/s41598-024-51995-8.
Crowdsourcing has been used in computational pathology to generate cell and cell nuclei annotations for machine learning. Herein, we broaden its scope to the previously unsolved challenging task of glioma cell detection. This requires multiplexed immunofluorescence microscopy due to diffuse invasiveness and exceptional similarity between glioma cells and reactive astrocytes. In four pilot experiments, we iteratively developed a task design enabling high-quality annotations by crowdworkers on Amazon Mechanical Turk. We applied majority or weighted vote and validated them against ground truth in the final setting. On the base of a YOLO convolutional neural network architecture, we used these consensus labels for training with different image representations regarding colors, intensities, and immmunohistochemical marker combinations. A crowd of 712 workers defined aggregated point annotations in 235 images with an average [Formula: see text] score of 0.627 for majority vote. The networks resulted in acceptable [Formula: see text] scores up to 0.69 for YOLOv8 on average and indicated first evidence for transferability to images lacking tumor markers, especially in IDH-wildtype glioblastoma. Our work confirms feasibility of crowdsourcing to generate labels suitable for training of machine learning tools in the challenging and clinically relevant use case of glioma microenvironment.
众包已被用于计算病理学,以生成机器学习的细胞和细胞核注释。在此,我们将其范围扩大到以前未解决的具有挑战性的胶质瘤细胞检测任务。这需要使用多重免疫荧光显微镜,因为胶质瘤细胞具有弥漫性侵袭性和与反应性星形胶质细胞的高度相似性。在四个试点实验中,我们在亚马逊 Mechanical Turk 上通过众包人员迭代开发了一项任务设计,从而实现了高质量的注释。我们应用了多数投票或加权投票,并在最终设置中根据ground truth 进行了验证。基于 YOLO 卷积神经网络架构,我们使用这些共识标签针对不同的颜色、强度和免疫组织化学标记组合的图像表示进行了训练。712 名工作人员在 235 张图像中定义了聚合点注释,多数投票的平均[Formula: see text]得分为 0.627。对于平均而言,YOLOv8 的网络结果达到了可接受的[Formula: see text]分数,高达 0.69,并且表明了缺乏肿瘤标志物的图像的可转移性的初步证据,尤其是在 IDH 野生型胶质母细胞瘤中。我们的工作证实了众包生成适合机器学习工具训练的标签的可行性,这些标签适用于胶质瘤微环境这一具有挑战性和临床相关的应用案例。
J Med Internet Res. 2022-1-18
J Med Internet Res. 2013-4-2
IEEE Trans Med Imaging. 2018-11-26
J Med Internet Res. 2024-7-4
IEEE Trans Med Imaging. 2016-2-11
IEEE Pulse. 2018
IEEE Trans Neural Netw Learn Syst. 2023-12