文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

降低 mRNA 药物和疫苗毒性风险的策略。

Strategies to reduce the risks of mRNA drug and vaccine toxicity.

机构信息

Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.

Moderna, Inc., Cambridge, MA, USA.

出版信息

Nat Rev Drug Discov. 2024 Apr;23(4):281-300. doi: 10.1038/s41573-023-00859-3. Epub 2024 Jan 23.


DOI:10.1038/s41573-023-00859-3
PMID:38263456
Abstract

mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.

摘要

mRNA 与脂质纳米颗粒结合是一种变革性技术,它使数十亿剂 2019 年冠状病毒病(COVID-19)疫苗能够在全球范围内快速开发和使用。然而,避免 mRNA 药物和疫苗出现不可接受的毒性仍然存在挑战。脂质纳米颗粒的结构成分、生产方法、给药途径以及与复杂 mRNA 结合产生的蛋白质都存在毒性问题。在这里,我们讨论了这些问题,特别是 mRNA 和脂质纳米颗粒的细胞嗜性和组织分布如何导致毒性及其可能的反应原性。我们重点讨论了用于蛋白质替代和基因编辑治疗以及疫苗的 mRNA 应用的不良事件,追溯了常见的生化和细胞途径。还讨论了用于筛选靶标疗效和降低非靶标毒性风险的现有模型和工具的潜力和局限性,包括体内和下一代体外模型。

相似文献

[1]
Strategies to reduce the risks of mRNA drug and vaccine toxicity.

Nat Rev Drug Discov. 2024-4

[2]
Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.

Acc Chem Res. 2021-11-2

[3]
Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines.

Int Immunol. 2023-5-8

[4]
Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines.

J Allergy Clin Immunol. 2021-6

[5]
From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases.

Acta Biomater. 2021-9-1

[6]
Advances in lipid nanoparticle mRNA therapeutics beyond COVID-19 vaccines.

Nanoscale. 2024-4-4

[7]
Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.

Acc Chem Res. 2021-12-7

[8]
The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency.

J Control Release. 2022-2

[9]
Current Status and Future Perspectives on MRNA Drug Manufacturing.

Mol Pharm. 2022-4-4

[10]
mRNA: Vaccine or Gene Therapy? The Safety Regulatory Issues.

Int J Mol Sci. 2023-6-22

引用本文的文献

[1]
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines.

Pharmaceutics. 2025-7-30

[2]
Cascade amplification of therapeutic payloads for cancer immunotherapy.

Commun Biol. 2025-8-25

[3]
Annexin A1 mRNA-loaded liposomes alleviate acute pancreatitis by suppressing STING pathway and promoting efferocytosis in macrophages.

Nat Nanotechnol. 2025-8-11

[4]
Harnessing mRNA for heart health: a new era in cardiovascular treatment.

Theranostics. 2025-7-2

[5]
Nanoparticle delivery of VEGF-B mRNA promotes T cell infiltration within tumor and triggers robust antitumor immunity.

Mol Ther Nucleic Acids. 2025-7-1

[6]
Development of an mRNA vaccine encoding IHNV glycoprotein protects rainbow trout (Oncorhynchus mykiss) from infection.

NPJ Vaccines. 2025-7-22

[7]
Controlling Payload Heterogeneity in Lipid Nanoparticles for RNA-Based Therapeutics.

bioRxiv. 2025-6-11

[8]
RNA chemistry and therapeutics.

Nat Rev Drug Discov. 2025-7-14

[9]
Boosting RNA nanotherapeutics with V-ATPase activating non-inflammatory lipid nanoparticles to treat chronic lung injury.

Nat Commun. 2025-7-14

[10]
Eliciting antitumor immunity via therapeutic cancer vaccines.

Cell Mol Immunol. 2025-7-9

本文引用的文献

[1]
Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues.

Mol Ther Methods Clin Dev. 2023-6-12

[2]
Messenger RNA-Based Therapeutics and Vaccines: What's beyond COVID-19?

ACS Pharmacol Transl Sci. 2023-7-3

[3]
Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications.

Adv Drug Deliv Rev. 2023-9

[4]
Anaphylatoxin Complement 5a in Pfizer BNT162b2-Induced Immediate-Type Vaccine Hypersensitivity Reactions.

Vaccines (Basel). 2023-5-23

[5]
The technological landscape and applications of single-cell multi-omics.

Nat Rev Mol Cell Biol. 2023-10

[6]
Correlating the Structure and Gene Silencing Activity of Oligonucleotide-Loaded Lipid Nanoparticles Using Small-Angle X-ray Scattering.

ACS Nano. 2023-6-27

[7]
PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective.

Bioconjug Chem. 2023-6-21

[8]
Clinical delivery of circular RNA: Lessons learned from RNA drug development.

Adv Drug Deliv Rev. 2023-6

[9]
Research progress on circular RNA vaccines.

Front Immunol. 2022

[10]
mRNA Vaccine Mitigates SARS-CoV-2 Infections and COVID-19.

Microbiol Spectr. 2023-2-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索