文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

mRNA 疫苗可减轻 SARS-CoV-2 感染和 COVID-19 疾病。

mRNA Vaccine Mitigates SARS-CoV-2 Infections and COVID-19.

机构信息

Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

St. Jude Children's Research Hospital Graduate School of Biomedical Sciences, Memphis, Tennessee, USA.

出版信息

Microbiol Spectr. 2023 Feb 14;11(1):e0424022. doi: 10.1128/spectrum.04240-22. Epub 2023 Jan 25.


DOI:10.1128/spectrum.04240-22
PMID:36695597
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9927305/
Abstract

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December of 2019 and is responsible for millions of infections and deaths across the globe. Vaccination against SARS-CoV-2 has proven effective to contain the spread of the virus and reduce disease. The production and distribution of these vaccines occurred at a remarkable pace, largely through the employment of the novel mRNA platform. However, interruptions in supply chain and high demand for clinical grade reagents have impeded the manufacture and distribution of mRNA vaccines at a time when accelerated vaccine deployment is crucial. Furthermore, the emergence of SARS-CoV-2 variants across the globe continues to threaten the efficacy of vaccines encoding the ancestral virus spike protein. Here, we report results from preclinical studies on mRNA vaccines developed using a proprietary mRNA production process developed by GreenLight Biosciences. Two mRNA vaccines encoding the full-length, nonstabilized SARS-CoV-2 spike protein, GLB-COV2-042 and GLB-COV2-043, containing uridine and pseudouridine, respectively, were evaluated in rodents for their immunogenicity and protection from SARS-CoV-2 challenge with the ancestral strain and the Alpha (B.1.1.7) and Beta (B.1.351) variants. In mice and hamsters, both vaccines induced robust spike-specific binding and neutralizing antibodies, and in mice, vaccines induced significant T cell responses with a clear Th1 bias. In hamsters, both vaccines conferred significant protection following challenge with SARS-CoV-2 as assessed by weight loss, viral load, and virus replication in the lungs and nasopharynx. These results support the development of GLB-COV2-042 and GLB-COV2-043 for clinical use. SARS-CoV-2 continues to disrupt everyday life and cause excess morbidity and mortality worldwide. Vaccination has been key to quelling the impact of this respiratory pathogen, and mRNA vaccines have led the charge on this front. However, the emergence of SARS-CoV-2 variants has sparked fears regarding vaccine efficacy. Furthermore, SARS-CoV-2 vaccines continue to be unevenly distributed across the globe. For these reasons and despite the success of emergency authorized and licensed SARS-CoV-2 vaccines, additional vaccines are needed to meet public health demands. The studies presented here are significant as they demonstrate robust protective efficacy of mRNA vaccines developed by GreenLight Biosciences against not only wild-type SARS-CoV-2, but also Alpha and Beta variants. These results support the progression of GreenLight Biosciences SARS-CoV-2 mRNA vaccines to clinical trials as another defense against SARS-CoV-2.

摘要

新型冠状病毒(SARS-CoV-2)于 2019 年 12 月被发现,它在全球范围内导致了数百万人感染和死亡。接种 SARS-CoV-2 疫苗已被证明可有效控制病毒传播并降低疾病严重程度。这些疫苗的生产和分发速度非常快,主要是通过采用新型 mRNA 平台。然而,供应链中断和对临床级试剂的高需求阻碍了 mRNA 疫苗的生产和分发,而此时加速疫苗部署至关重要。此外,全球 SARS-CoV-2 变体的出现继续威胁到编码原始病毒刺突蛋白的疫苗的功效。在这里,我们报告了使用 GreenLight Biosciences 开发的专有 mRNA 生产工艺开发的 mRNA 疫苗的临床前研究结果。两种编码全长、非稳定 SARS-CoV-2 刺突蛋白的 mRNA 疫苗,GLB-COV2-042 和 GLB-COV2-043,分别含有尿嘧啶和假尿嘧啶,在啮齿动物中评估了其免疫原性和对原始毒株和 Alpha(B.1.1.7)和 Beta(B.1.351)变体的 SARS-CoV-2 攻击的保护作用。在小鼠和仓鼠中,两种疫苗均诱导了强烈的刺突特异性结合和中和抗体,并且在小鼠中,疫苗诱导了明显的 T 细胞应答,具有明显的 Th1 偏向。在仓鼠中,两种疫苗在 SARS-CoV-2 攻击后均提供了显著的保护作用,表现为体重减轻、病毒载量以及肺部和鼻咽部的病毒复制减少。这些结果支持 GLB-COV2-042 和 GLB-COV2-043 的临床开发。SARS-CoV-2 继续扰乱日常生活并在全球范围内造成过多的发病率和死亡率。接种疫苗是控制这种呼吸道病原体影响的关键,而 mRNA 疫苗在这方面处于领先地位。然而,SARS-CoV-2 变体的出现引发了对疫苗功效的担忧。此外,SARS-CoV-2 疫苗在全球的分布仍然不均匀。出于这些原因,尽管紧急授权和许可的 SARS-CoV-2 疫苗取得了成功,但仍需要额外的疫苗来满足公共卫生需求。这里介绍的研究具有重要意义,因为它们证明了 GreenLight Biosciences 开发的 mRNA 疫苗对野生型 SARS-CoV-2 以及 Alpha 和 Beta 变体具有强大的保护效力。这些结果支持 GreenLight Biosciences SARS-CoV-2 mRNA 疫苗进入临床试验,作为对抗 SARS-CoV-2 的另一种防御手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/8a78338acf58/spectrum.04240-22-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/68ec242db165/spectrum.04240-22-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/18adc7a5f328/spectrum.04240-22-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/3f707ac09b4d/spectrum.04240-22-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/8caa05f2ce76/spectrum.04240-22-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/59e0026ebeb1/spectrum.04240-22-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/4a4a5763b081/spectrum.04240-22-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/8a78338acf58/spectrum.04240-22-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/68ec242db165/spectrum.04240-22-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/18adc7a5f328/spectrum.04240-22-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/3f707ac09b4d/spectrum.04240-22-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/8caa05f2ce76/spectrum.04240-22-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/59e0026ebeb1/spectrum.04240-22-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/4a4a5763b081/spectrum.04240-22-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e924/9927305/8a78338acf58/spectrum.04240-22-f007.jpg

相似文献

[1]
mRNA Vaccine Mitigates SARS-CoV-2 Infections and COVID-19.

Microbiol Spectr. 2023-2-14

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Safety and immunogenicity of a modified mRNA-lipid nanoparticle vaccine candidate against COVID-19: Results from a phase 1, dose-escalation study.

Hum Vaccin Immunother. 2024-12-31

[4]
The spike 486 site is a key immune evasion point and a determinant of the immunogenicity of the RBD-dimer mRNA vaccine against SARS-CoV-2 variants.

Virology. 2025-6-20

[5]
Efficacy and safety of COVID-19 vaccines.

Cochrane Database Syst Rev. 2022-12-7

[6]
COVID-19 Vaccines

2006

[7]
An mRNA vaccine encoding the SARS-CoV-2 Omicron XBB.1.5 receptor-binding domain protects mice from the JN.1 variant.

EBioMedicine. 2025-6-6

[8]
Establishment of human post-vaccination SARS-CoV-2 standard reference sera.

J Immunol Methods. 2024-7

[9]
SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19.

Cochrane Database Syst Rev. 2021-9-2

[10]
Mapping of human monoclonal antibody responses to XBB.1.5 COVID-19 monovalent vaccines: a B cell analysis.

Lancet Microbe. 2025-5-30

引用本文的文献

[1]
Optimization of a panel of behavioral tests for use in containment using a golden Syrian hamster model.

J Virol Methods. 2025-6

[2]
Functionally Designed Nanovaccines against SARS-CoV-2 and Its Variants.

Vaccines (Basel). 2024-7-12

[3]
mRNA vaccine development and applications: A special focus on tumors (Review).

Int J Oncol. 2024-8

[4]
Does education influence COVID-19 vaccination? A global view.

Heliyon. 2024-1-19

[5]
Strategies to reduce the risks of mRNA drug and vaccine toxicity.

Nat Rev Drug Discov. 2024-4

[6]
Safety, immunogenicity and efficacy of an mRNA-based COVID-19 vaccine, GLB-COV2-043, in preclinical animal models.

Sci Rep. 2023-12-1

[7]
Seasonal quadrivalent mRNA vaccine prevents and mitigates influenza infection.

NPJ Vaccines. 2023-10-12

本文引用的文献

[1]
Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant.

N Engl J Med. 2022-4-21

[2]
Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.

Nature. 2022-2

[3]
mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant.

Cell. 2022-2-3

[4]
Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study.

BMJ. 2021-12-15

[5]
A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses.

Cell Host Microbe. 2021-7-14

[6]
Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants.

N Engl J Med. 2021-7-8

[7]
Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera.

Cell. 2021-4-29

[8]
Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7.

Nature. 2021-5

[9]
Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies.

Nat Med. 2021-4

[10]
U.S. COVID-19 Vaccination Challenges Go Beyond Supply.

Ann Intern Med. 2021-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索