Suppr超能文献

应用优化空间谱分析的弥散-弛豫相关波谱成像技术对透明细胞肾细胞癌分级的研究。

Investigation of clear cell renal cell carcinoma grades using diffusion-relaxation correlation spectroscopic imaging with optimized spatial-spectrum analysis.

机构信息

Department of Radiology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China.

MR Scientific Marketing, Siemens Healthineers Ltd., 200129 Shanghai, China.

出版信息

Br J Radiol. 2024 Jan 23;97(1153):135-141. doi: 10.1093/bjr/tqad003.

Abstract

OBJECTIVES

To differentiate high-grade from low-grade clear cell renal cell carcinoma (ccRCC) using diffusion-relaxation correlation spectroscopic imaging (DR-CSI) spectra in an equal separating analysis.

METHODS

Eighty patients with 86 pathologically confirmed ccRCCs who underwent DR-CSI were enrolled. Two radiologists delineated the region of interest. The spectrum was derived based on DR-CSI and was further segmented into multiple equal subregions from 22 to 99. The agreement between the 2 radiologists was assessed by the intraclass correlation coefficient (ICC). Logistic regression was used to establish the regression model for differentiation, and 5-fold cross-validation was used to evaluate its accuracy. McNemar's test was used to compare the diagnostic performance between equipartition models and the traditional parameters, including the apparent diffusion coefficient (ADC) and T2 value.

RESULTS

The inter-reader agreement decreased as the divisions in the equipartition model increased (overall ICC ranged from 0.859 to 0.920). The accuracy increased from the 22 to 99 equipartition model (0.68 for 22, 0.69 for 33 and 44, 0.70 for 55, 0.71 for 66, 0.78 for 77, and 0.75 for 88 and 99). The equipartition models with divisions >7*7 were significantly better than ADC and T2 (vs ADC: P = .002-.008; vs T2: P = .001-.004).

CONCLUSIONS

The equipartition method has the potential to analyse the DR-CSI spectrum and discriminate between low-grade and high-grade ccRCC.

ADVANCES IN KNOWLEDGE

The evaluation of DR-CSI relies on prior knowledge, and how to assess the spectrum derived from DR-CSI without prior knowledge has not been well studied.

摘要

目的

通过等分割分析,利用扩散弛豫相关波谱成像(DR-CSI)谱区分高级别和低级别透明细胞肾细胞癌(ccRCC)。

方法

纳入 80 例经病理证实的 86 例 ccRCC 患者,行 DR-CSI 检查。两位放射科医生勾画出感兴趣区。基于 DR-CSI 得出谱图,并进一步将其分割成 22 至 99 的多个相等亚区。采用组内相关系数(ICC)评估两位放射科医生之间的一致性。采用 Logistic 回归建立用于区分的回归模型,并采用 5 折交叉验证评估其准确性。采用 McNemar 检验比较等分区模型和传统参数(表观扩散系数(ADC)和 T2 值)的诊断性能。

结果

随着等分区模型的划分增加,读者间的一致性降低(整体 ICC 范围为 0.859 至 0.920)。从 22 至 99 等分区模型的准确性逐渐增加(22 为 0.68,33 和 44 为 0.69,55 为 0.70,66 为 0.71,77 为 0.78,88 和 99 为 0.75)。分区>7*7 的等分区模型明显优于 ADC 和 T2(与 ADC 相比:P = .002-.008;与 T2 相比:P = .001-.004)。

结论

分区法有可能分析 DR-CSI 光谱,并区分低级别和高级别 ccRCC。

知识进展

DR-CSI 的评估依赖于先验知识,如何在没有先验知识的情况下评估从 DR-CSI 得出的光谱尚未得到很好的研究。

相似文献

2
Grading Clear Cell Renal Cell Carcinoma Grade Using Diffusion Relaxation Correlated MR Spectroscopic Imaging.
J Magn Reson Imaging. 2024 Feb;59(2):699-710. doi: 10.1002/jmri.28777. Epub 2023 May 20.
10
Grading of clear cell renal cell carcinoma using diffusion MRI with a fractional order calculus model.
Acta Radiol. 2023 Jan;64(1):421-430. doi: 10.1177/02841851211072482. Epub 2022 Jan 18.

本文引用的文献

1
Grading Clear Cell Renal Cell Carcinoma Grade Using Diffusion Relaxation Correlated MR Spectroscopic Imaging.
J Magn Reson Imaging. 2024 Feb;59(2):699-710. doi: 10.1002/jmri.28777. Epub 2023 May 20.
5
Combined diffusion-relaxometry microstructure imaging: Current status and future prospects.
Magn Reson Med. 2021 Dec;86(6):2987-3011. doi: 10.1002/mrm.28963. Epub 2021 Aug 19.
7
FeAture Explorer (FAE): A tool for developing and comparing radiomics models.
PLoS One. 2020 Aug 17;15(8):e0237587. doi: 10.1371/journal.pone.0237587. eCollection 2020.
8
Macrophage HIF-1α Is an Independent Prognostic Indicator in Kidney Cancer.
Clin Cancer Res. 2020 Sep 15;26(18):4970-4982. doi: 10.1158/1078-0432.CCR-19-3890. Epub 2020 Jun 25.
10
Multidimensional correlation MRI.
NMR Biomed. 2020 Dec;33(12):e4226. doi: 10.1002/nbm.4226. Epub 2020 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验