Xu Qiaoyi, Adam Afzan, Abdullah Azizi, Bariyah Nurkhairul
Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
College of Intelligent Manufacturing, Zibo Vocational Institute, Zibo 255314, China.
Diagnostics (Basel). 2025 Apr 30;15(9):1150. doi: 10.3390/diagnostics15091150.
Breast cancer is one of the leading causes of death among women worldwide. Accurate early detection of lymphocytes and molecular biomarkers is essential for improving diagnostic precision and patient prognosis. Whole slide images (WSIs) are central to digital pathology workflows in breast cancer assessment. However, applying deep learning techniques to WSIs presents persistent challenges, including variability in image quality, limited availability of high-quality annotations, poor model interpretability, high computational demands, and suboptimal processing efficiency. This systematic review, guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), examines deep learning-based detection methods for breast cancer published between 2020 and 2024. The analysis includes 39 peer-reviewed studies and 20 widely used WSI datasets. To enhance clinical relevance and guide model development, this study introduces a five-dimensional evaluation framework covering accuracy and performance, robustness and generalization, interpretability, computational efficiency, and annotation quality. The framework facilitates a balanced and clinically aligned assessment of both established methods and recent innovations. This review offers a comprehensive analysis and proposes a practical roadmap for addressing core challenges in WSI-based breast cancer detection. It fills a critical gap in the literature and provides actionable guidance for researchers, clinicians, and developers seeking to optimize and translate WSI-based technologies into clinical workflows for comprehensive breast cancer assessment.
乳腺癌是全球女性主要死因之一。准确早期检测淋巴细胞和分子生物标志物对于提高诊断精度和患者预后至关重要。全切片图像(WSIs)是乳腺癌评估中数字病理学工作流程的核心。然而,将深度学习技术应用于全切片图像存在持续挑战,包括图像质量的可变性、高质量标注的可用性有限、模型可解释性差、高计算需求以及次优处理效率。本系统评价以系统评价和荟萃分析的首选报告项目(PRISMA)为指导,考察了2020年至2024年间发表的基于深度学习的乳腺癌检测方法。该分析包括39项同行评审研究和20个广泛使用的全切片图像数据集。为了增强临床相关性并指导模型开发,本研究引入了一个五维评估框架,涵盖准确性和性能、稳健性和泛化性、可解释性、计算效率和标注质量。该框架有助于对既定方法和近期创新进行平衡且与临床一致的评估。本综述提供了全面分析,并为解决基于全切片图像的乳腺癌检测中的核心挑战提出了实用路线图。它填补了文献中的关键空白,并为寻求优化基于全切片图像的技术并将其转化为用于全面乳腺癌评估的临床工作流程的研究人员、临床医生和开发者提供了可操作的指导。