Jeon Hyunwoo, Lee Song Ha, Shin Jongho, Song Kicheol, Ahn Nari, Park Jinsoo
Department of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro Buk-gu, Gwangju, 61186 Republic of Korea.
Analytical Engineering Team, Samsung Display Co., Ltd., 181 Samsung-ro, Tangjeong-myeon, Asan-si, Chungcheongnam-do, 31454 Republic of Korea.
Microsyst Nanoeng. 2024 Jan 22;10:15. doi: 10.1038/s41378-023-00633-w. eCollection 2024.
Elasto-inertial microfluidic separation offers many advantages including high throughput and separation resolution. Even though the separation efficiency highly depends on precise control of the flow conditions, no concrete guidelines have been reported yet in elasto-inertial microfluidics. Here, we propose a dimensionless analysis for precise estimation of the microsphere behaviors across the interface of Newtonian and viscoelastic fluids. Reynolds number, modified Weissenberg number, and modified elastic number are used to investigate the balance between inertial and elastic lift forces. Based on the findings, we introduce a new dimensionless number defined as the width of the Newtonian fluid stream divided by microsphere diameter. The proposed dimensionless analysis allows us to predict whether the microspheres migrate across the co-flow interface. The theoretical estimation is found to be in good agreement with the experimental results using 2.1- and 3.2-μm-diameter polystyrene microspheres in a co-flow of water and polyethylene oxide solution. Based on the theoretical estimation, we also realize submicron separation of the microspheres with 2.1 and 2.5 μm in diameter at high throughput, high purity (>95%), and high recovery rate (>97%). The applicability of the proposed method was validated by separation of platelets from similar-sized ().
弹性惯性微流体分离具有许多优点,包括高通量和分离分辨率。尽管分离效率高度依赖于对流动条件的精确控制,但在弹性惯性微流体领域尚未有具体的指导方针报道。在此,我们提出一种无量纲分析方法,用于精确估计微球在牛顿流体和粘弹性流体界面处的行为。雷诺数、修正的魏森贝格数和修正的弹性数用于研究惯性升力和弹性升力之间的平衡。基于这些发现,我们引入了一个新的无量纲数,定义为牛顿流体流的宽度除以微球直径。所提出的无量纲分析使我们能够预测微球是否会穿过并流界面迁移。理论估计结果与使用直径为2.1微米和3.2微米的聚苯乙烯微球在水和聚环氧乙烷溶液并流中的实验结果高度吻合。基于理论估计,我们还实现了对直径为2.1微米和2.5微米的微球的亚微米级分离,分离通量高、纯度高(>95%)且回收率高(>97%)。通过从类似大小的(此处原文括号内容缺失)中分离血小板,验证了所提出方法的适用性。