Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
Department of Medicinal Chemistry I, University of Regensburg, 93053 Regensburg, Bavaria, Germany.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37734-37747. doi: 10.1021/acsami.4c07821. Epub 2024 Jul 15.
A major bottleneck diminishing the therapeutic efficacy of various drugs is that only small proportions of the administered dose reach the site of action. One promising approach to increase the drug amount in the target tissue is the delivery via nanoparticles (NPs) modified with ligands of cell surface receptors for the selective identification of target cells. However, since receptor binding can unintentionally trigger intracellular signaling cascades, our objective was to develop a receptor-independent way of NP uptake. Cell-penetrating peptides (CPPs) are an attractive tool since they allow efficient cell membrane crossing. So far, their applicability is severely limited as their uptake-promoting ability is nonspecific. Therefore, we aimed to achieve a conditional CPP-mediated NP internalization exclusively into target cells. We synthesized different CPP candidates and investigated their influence on nanoparticle stability, ζ-potential, and uptake characteristics in a core-shell nanoparticle system consisting of poly(lactid--glycolid) (PLGA) and poly(lactic acid)-poly(ethylene glycol) (PLAPEG) block copolymers with CPPs attached to the PEG part. We identified TAT47-57 (TAT) as the most promising candidate and subsequently combined the TAT-modified PLAPEG polymer with longer PLAPEG polymer chains, modified with the potent angiotensin-converting enzyme 2 (ACE2) inhibitor MLN-4760. While MLN-4760 enables selective target cell identification, the additional PEG length hides the CPP during a first unspecific cell contact. Only after the previous selective binding of MLN-4760 to ACE2, the established spatial proximity exposes the CPP, triggering cell uptake. We found an 18-fold uptake improvement in ACE2-positive cells compared to unmodified particles. In summary, our work paves the way for a conditional and thus highly selective receptor-independent nanoparticle uptake, which is beneficial in terms of avoiding side effects.
各种药物的治疗效果受到一个主要瓶颈的限制,那就是只有一小部分给药剂量到达作用部位。增加靶组织中药物数量的一种有前途的方法是通过与细胞表面受体的配体修饰的纳米颗粒(NPs)进行递药,以选择性识别靶细胞。然而,由于受体结合可能无意中触发细胞内信号级联反应,我们的目标是开发一种非受体依赖的 NP 摄取方法。细胞穿透肽(CPPs)是一种有吸引力的工具,因为它们允许有效的细胞膜穿透。到目前为止,它们的适用性受到严重限制,因为它们的促进摄取能力是非特异性的。因此,我们旨在实现一种条件 CPP 介导的 NP 内化,仅进入靶细胞。我们合成了不同的 CPP 候选物,并研究了它们对核壳纳米颗粒系统中聚(乳酸-乙醇酸)(PLGA)和聚(乳酸)-聚(乙二醇)(PLAPEG)嵌段共聚物的纳米颗粒稳定性、ζ-电位和摄取特性的影响,这些共聚物的 PEG 部分连接有 CPP。我们确定 TAT47-57(TAT)是最有前途的候选物,随后将 TAT 修饰的 PLAPEG 聚合物与更长的 PLAPEG 聚合物链结合,这些聚合物链被修饰为具有强大的血管紧张素转换酶 2(ACE2)抑制剂 MLN-4760。虽然 MLN-4760 能够选择性地识别靶细胞,但额外的 PEG 长度在第一次非特异性细胞接触时隐藏 CPP。只有在 MLN-4760 与 ACE2 之前选择性结合后,建立的空间接近度暴露 CPP,触发细胞摄取。与未修饰的颗粒相比,在 ACE2 阳性细胞中观察到 18 倍的摄取增强。总之,我们的工作为条件性和因此高度选择性的非受体依赖的纳米颗粒摄取铺平了道路,这在避免副作用方面是有益的。