Zhao Xin, Li Wan-Peng, Cao Yanhui, Portniagin Arsenii, Tang Bing, Wang Shixun, Liu Qi, Yu Denis Y W, Zhong Xiaoyan, Zheng Xuerong, Rogach Andrey L
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China.
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
ACS Nano. 2024 Feb 6;18(5):4256-4268. doi: 10.1021/acsnano.3c09639. Epub 2024 Jan 24.
Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of TiCT by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.6 wt %. The electron delocalization resulting from terminated O atoms on MXene substrates, N atoms in L-tryptophan anchoring moieties, and catalytic metal atoms Co and Ni provides an optimal adsorption strength of intermediates and boosts the HER and OER kinetics, thereby notably promoting the intrinsic activity of the electrocatalyst. CoNi-TiCT electrocatalyst displayed HER and OER overpotentials of 31 and 241 mV at 10 mA cm, respectively. Importantly, the CoNi-TiCT electrocatalyst also exhibited high operational stability for both OER and HER over 100 h at an industrially relevant current density of 500 mA cm. Our study provided guidance for constructing dual-atom active metal sites on MXene substrates to synergistically enhance the electrochemical efficiency and stability of the energy conversion and storage systems.
导电基底上的双原子催化位点为加速多步析氢和析氧反应(分别为HER和OER)的动力学提供了一个有前景的机会。如果能建立起确保金属与基底相互作用以及足够质量负载的高效表面锚定策略,那么使用MXenes作为基底来沉积这些双原子电催化剂是一种很有前景的策略。我们通过预吸附L-色氨酸分子引入了一种MXene基底的表面改性策略,该策略能够通过形成N-Co/Ni-O键在TiCT表面附着双原子Co/Ni电催化剂,质量负载高达5.6 wt%。由MXene基底上的端基O原子、L-色氨酸锚定部分中的N原子以及催化金属原子Co和Ni所导致的电子离域提供了中间体的最佳吸附强度,并促进了HER和OER动力学,从而显著提高了电催化剂的本征活性。CoNi-TiCT电催化剂在10 mA cm时的HER和OER过电位分别为31和241 mV。重要的是,在500 mA cm的工业相关电流密度下,CoNi-TiCT电催化剂在100 h以上的OER和HER过程中也表现出高操作稳定性。我们的研究为在MXene基底上构建双原子活性金属位点以协同提高能量转换和存储系统的电化学效率和稳定性提供了指导。