Suppr超能文献

基于标签的心境和精神病障碍的功能性脑连接失调的元分析。

Label-based meta-analysis of functional brain dysconnectivity across mood and psychotic disorders.

机构信息

Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada; Department of Psychiatry and Addictology, University of Montreal, Montréal, Québec, Canada.

Research Center, Montreal University Institute for Mental Health, Montréal, Québec, Canada.

出版信息

Prog Neuropsychopharmacol Biol Psychiatry. 2024 Apr 20;131:110950. doi: 10.1016/j.pnpbp.2024.110950. Epub 2024 Jan 22.

Abstract

BACKGROUND

Resting-state functional magnetic resonance imaging (rsfMRI) studies have revealed patterns of functional brain dysconnectivity in psychiatric disorders such as major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). Although these disorders have been mostly studied in isolation, there is mounting evidence of shared neurobiological alterations across them.

METHODS

To uncover the nature of the relatedness between these psychiatric disorders, we conducted an innovative meta-analysis of dysconnectivity findings reported separately in MDD, BD and SZ. Rather than relying on a classical voxel level coordinate-based approach, our procedure extracted relevant neuroanatomical labels from text data and examined findings at the whole brain network level. Data were drawn from 428 rsfMRI studies investigating MDD (158 studies, 7429 patients/7414 controls), BD (81 studies, 3330 patients/4096 patients) and/or SZ (223 studies, 11,168 patients/11,754 controls). Permutation testing revealed commonalities and differences in hypoconnectivity and hyperconnectivity patterns across disorders.

RESULTS

Hypoconnectivity and hyperconnectivity patterns of higher-order cognitive (default-mode, fronto-parietal, cingulo-opercular) networks were similarly observed across the three disorders. By contrast, dysconnectivity of lower-order (somatomotor, visual, auditory) networks in some cases differed between disorders, notably dissociating SZ from BD and MDD.

CONCLUSIONS

Findings suggest that functional brain dysconnectivity of higher-order cognitive networks is largely transdiagnostic in nature while that of lower-order networks may best discriminate between mood and psychotic disorders, thus emphasizing the relevance of motor and sensory networks to psychiatric neuroscience.

摘要

背景

静息态功能磁共振成像(rsfMRI)研究揭示了精神障碍(如重度抑郁症(MDD)、双相情感障碍(BD)和精神分裂症(SZ))中功能性大脑连接异常的模式。尽管这些疾病大多是单独研究的,但越来越多的证据表明它们之间存在共同的神经生物学改变。

方法

为了揭示这些精神障碍之间的相关性本质,我们对分别在 MDD、BD 和 SZ 中报告的连接异常发现进行了创新的元分析。我们的方法不是依赖于经典的体素水平基于坐标的方法,而是从文本数据中提取相关的神经解剖学标签,并在全脑网络水平上检查发现。数据来自 428 项 rsfMRI 研究,其中包括 MDD(158 项研究,7429 名患者/7414 名对照)、BD(81 项研究,3330 名患者/4096 名患者)和/或 SZ(223 项研究,11168 名患者/11754 名对照)。置换检验揭示了跨疾病的低连接和高连接模式的共性和差异。

结果

在三种疾病中,高级认知(默认模式、额顶叶、扣带回-顶叶)网络的低连接和高连接模式是相似的。相比之下,在某些情况下,低级(躯体运动、视觉、听觉)网络的连接异常在疾病之间存在差异,特别是将 SZ 与 BD 和 MDD 区分开来。

结论

研究结果表明,高级认知网络的功能大脑连接异常在很大程度上是跨诊断的,而低级网络的连接异常可能最好地区分情感和精神病障碍,从而强调运动和感觉网络与精神神经科学的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验