Department of Neuropsychiatry, Graduate School of Wakayama Medical University, Wakayama 641-8509, Japan.
Department of Neuropsychiatry, Graduate School of Wakayama Medical University, Wakayama 641-8509, Japan.
Neuroimage Clin. 2024;41:103574. doi: 10.1016/j.nicl.2024.103574. Epub 2024 Feb 10.
The dynamics of large-scale networks, which are known as distributed sets of functionally synchronized brain regions and include the visual network (VIN), somatomotor network (SMN), dorsal attention network (DAN), salience network (SAN), limbic network (LIN), frontoparietal network (FPN), and default mode network (DMN), play important roles in emotional and cognitive processes in humans. Although disruptions in these large-scale networks are considered critical for the pathophysiological mechanisms of psychiatric disorders, their role in psychiatric disorders remains unknown. We aimed to elucidate the aberrant dynamics across large-scale networks in patients with schizophrenia (SZ) and mood disorders.
We performed energy-landscape analysis to investigate the aberrant brain dynamics of seven large-scale networks across 50 healthy controls (HCs), 36 patients with SZ, and 42 patients with major depressive disorder (MDD) recruited at Wakayama Medical University. We identified major patterns of brain activity using energy-landscape analysis and estimated their duration, occurrence, and ease of transition.
We identified four major brain activity patterns that were characterized by the activation patterns of the DMN and VIN (state 1, DMN (-) VIN (-); state 2, DMN (+) VIN (+); state 3, DMN (-) VIN (+); and state 4, DMN (+) VIN (-)). The duration of state 1 and the occurrence of states 1 and 2 were shorter in the SZ group than in HCs and the MDD group, and the duration of state 3 was longer in the SZ group. The ease of transition between states 3 and 4 was larger in the SZ group than in the HCs and the MDD group. The ease of transition from state 3 to state 4 was negatively associated with verbal fluency in patients with SZ. The current study showed that the brain dynamics was more disrupted in SZ than in MDD.
Energy-landscape analysis revealed aberrant brain dynamics across large-scale networks between SZ and MDD and their associations with cognitive abilities in SZ, which cannot be captured by conventional functional connectivity analyses. These results provide new insights into the pathophysiological mechanisms underlying SZ and mood disorders.
大规模网络的动力学是指功能同步的脑区的分布式集合,包括视觉网络(VIN)、躯体运动网络(SMN)、背侧注意网络(DAN)、突显网络(SAN)、边缘网络(LIN)、额顶网络(FPN)和默认模式网络(DMN),它们在人类的情绪和认知过程中起着重要作用。尽管这些大规模网络的中断被认为是精神障碍病理生理机制的关键,但它们在精神障碍中的作用仍不清楚。我们旨在阐明精神分裂症(SZ)和心境障碍患者的大规模网络之间的异常动态。
我们进行了能量景观分析,以研究来自和歌山医科大学的 50 名健康对照(HCs)、36 名 SZ 患者和 42 名重性抑郁障碍(MDD)患者的七个大规模网络的异常脑动力学。我们使用能量景观分析来识别大脑活动的主要模式,并估计它们的持续时间、出现和易于转换。
我们确定了四个主要的大脑活动模式,其特征是 DMN 和 VIN 的激活模式(状态 1,DMN(-)VIN(-);状态 2,DMN(+)VIN(+);状态 3,DMN(-)VIN(+);和状态 4,DMN(+)VIN(-))。与 HCs 和 MDD 相比,SZ 组的状态 1 的持续时间和状态 1 和 2 的出现时间更短,状态 3 的持续时间更长。SZ 组状态 3 和 4 之间的转换容易度更大。SZ 组从状态 3 到状态 4 的转换容易度与 SZ 患者的言语流畅性呈负相关。本研究表明,与 MDD 相比,SZ 中的大脑动力学更紊乱。
能量景观分析揭示了 SZ 和 MDD 之间的大规模网络异常动态及其与 SZ 认知能力的关系,这是常规功能连接分析无法捕捉到的。这些结果为 SZ 和心境障碍的病理生理机制提供了新的见解。