Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
Sci Rep. 2024 Jan 25;14(1):2126. doi: 10.1038/s41598-024-51765-6.
Identification of isocitrate dehydrogenase (IDH)-mutant glioma patients at high risk of early progression is critical for radiotherapy treatment planning. Currently tools to stratify risk of early progression are lacking. We sought to identify a combination of molecular markers that could be used to identify patients who may have a greater need for adjuvant radiation therapy machine learning technology. 507 WHO Grade 2 and 3 glioma cases from The Cancer Genome Atlas, and 1309 cases from AACR GENIE v13.0 datasets were studied for genetic disparities between IDH1-wildtype and IDH1-mutant cohorts, and between different age groups. Genetic features such as mutations and copy number variations (CNVs) correlated with IDH1 mutation status were selected as potential inputs to train artificial neural networks (ANNs) to predict IDH1 mutation status. Grade 2 and 3 glioma cases from the Memorial Sloan Kettering dataset (n = 404) and Grade 3 glioma cases with subtotal resection (STR) from Northwestern University (NU) (n = 21) were used to further evaluate the best performing ANN model as independent datasets. IDH1 mutation is associated with decreased CNVs of EGFR (21% vs. 3%), CDKN2A (20% vs. 6%), PTEN (14% vs. 1.7%), and increased percentage of mutations for TP53 (15% vs. 63%), and ATRX (10% vs. 54%), which were all statistically significant (p < 0.001). Age > 40 was unable to identify high-risk IDH1-mutant with early progression. A glioma early progression risk prediction (GlioPredictor) score generated from the best performing ANN model (6/6/6/6/2/1) with 6 inputs, including CNVs of EGFR, PTEN and CDKN2A, mutation status of TP53 and ATRX, patient's age can predict IDH1 mutation status with over 90% accuracy. The GlioPredictor score identified a subgroup of high-risk IDH1-mutant in TCGA and NU datasets with early disease progression (p = 0.0019, 0.0238, respectively). The GlioPredictor that integrates age at diagnosis, CNVs of EGFR, CDKN2A, PTEN and mutation status of TP53, and ATRX can identify a small cohort of IDH-mutant with high risk of early progression. The current version of GlioPredictor mainly incorporated clinically often tested genetic biomarkers. Considering complexity of clinical and genetic features that correlate with glioma progression, future derivatives of GlioPredictor incorporating more inputs can be a potential supplement for adjuvant radiotherapy patient selection of IDH-mutant glioma patients.
鉴定出异柠檬酸脱氢酶(IDH)突变型胶质瘤患者具有较高的早期进展风险,这对放疗治疗计划至关重要。目前缺乏分层早期进展风险的工具。我们试图确定一组分子标志物,用于识别可能更需要辅助放疗的患者。我们研究了来自癌症基因组图谱(TCGA)的 507 例 WHO 2 级和 3 级胶质瘤病例和来自 AACR GENIE v13.0 数据集的 1309 例病例,以研究 IDH1 野生型和 IDH1 突变型队列之间以及不同年龄组之间的遗传差异。选择与 IDH1 突变状态相关的遗传特征,如突变和拷贝数变异(CNVs),作为潜在输入,以训练人工神经网络(ANN)来预测 IDH1 突变状态。我们使用 Memorial Sloan Kettering 数据集的 2 级和 3 级胶质瘤病例(n=404)和西北大学(NU)的部分肿瘤切除(STR)的 3 级胶质瘤病例(n=21)进一步评估最佳 ANN 模型作为独立数据集。IDH1 突变与 EGFR(21%对 3%)、CDKN2A(20%对 6%)、PTEN(14%对 1.7%)的 CNV 减少以及 TP53(15%对 63%)和 ATRX(10%对 54%)的突变百分比增加有关,这些均具有统计学意义(p<0.001)。年龄>40 岁无法识别具有早期进展的高危 IDH1 突变型。我们使用具有 6 个输入的最佳 ANN 模型(6/6/6/6/2/1)生成胶质瘤早期进展风险预测(GlioPredictor)评分,包括 EGFR、PTEN 和 CDKN2A 的 CNVs、TP53 和 ATRX 的突变状态以及患者年龄,可以以超过 90%的准确率预测 IDH1 突变状态。GlioPredictor 评分在 TCGA 和 NU 数据集中确定了具有早期疾病进展的高危 IDH1 突变亚组(p=0.0019,0.0238)。GlioPredictor 综合了诊断时的年龄、EGFR、CDKN2A、PTEN 的 CNVs 和 TP53、ATRX 的突变状态,可识别一小部分 IDH 突变型患者具有较高的早期进展风险。当前版本的 GlioPredictor 主要整合了临床常用的遗传生物标志物。考虑到与胶质瘤进展相关的临床和遗传特征的复杂性,未来的 GlioPredictor 衍生产品纳入更多输入,可以作为 IDH 突变型胶质瘤患者辅助放疗患者选择的潜在补充。