University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA.
Boston Medical Center, Boston, MA, USA.
Genome Med. 2024 Jan 25;16(1):17. doi: 10.1186/s13073-024-01281-z.
BACKGROUND: Despite advancements in the successful use of immunotherapy in treating a variety of solid tumors, applications in treating brain tumors have lagged considerably. This is due, at least in part, to the lack of well-characterized antigens expressed within brain tumors that can mediate tumor rejection; the low mutational burden of these tumors that limits the abundance of targetable neoantigens; and the immunologically "cold" tumor microenvironment that hampers the generation of sustained and productive immunologic responses. The field of mRNA-based therapeutics has experienced a boon following the universal approval of COVID-19 mRNA vaccines. mRNA-based immunotherapeutics have also garnered widespread interest for their potential to revolutionize cancer treatment. In this study, we developed a novel and scalable approach for the production of personalized mRNA-based therapeutics that target multiple tumor rejection antigens in a single therapy for the treatment of refractory brain tumors. METHODS: Tumor-specific neoantigens and aberrantly overexpressed tumor-associated antigens were identified for glioblastoma and medulloblastoma tumors using our cancer immunogenomics pipeline called Open Reading Frame Antigen Network (O.R.A.N). Personalized tumor antigen-specific mRNA vaccine was developed for each individual tumor model using selective gene capture and enrichment strategy. The immunogenicity and efficacy of the personalized mRNA vaccines was evaluated in combination with anti-PD-1 immune checkpoint blockade therapy or adoptive cellular therapy with ex vivo expanded tumor antigen-specific lymphocytes in highly aggressive murine GBM models. RESULTS: Our results demonstrate the effectiveness of the antigen-specific mRNA vaccines in eliciting robust anti-tumor immune responses in GBM hosts. Our findings substantiate an increase in tumor-infiltrating lymphocytes characterized by enhanced effector function, both intratumorally and systemically, after antigen-specific mRNA-directed immunotherapy, resulting in a favorable shift in the tumor microenvironment from immunologically cold to hot. Capacity to generate personalized mRNA vaccines targeting human GBM antigens was also demonstrated. CONCLUSIONS: We have established a personalized and customizable mRNA-therapeutic approach that effectively targets a plurality of tumor antigens and demonstrated potent anti-tumor response in preclinical brain tumor models. This platform mRNA technology uniquely addresses the challenge of tumor heterogeneity and low antigen burden, two key deficiencies in targeting the classically immunotherapy-resistant CNS malignancies, and possibly other cold tumor types.
背景:尽管免疫疗法在治疗多种实体瘤方面取得了成功,但在治疗脑肿瘤方面的应用却大大滞后。这至少部分是由于脑肿瘤中缺乏能够介导肿瘤排斥的特征明确的抗原;这些肿瘤的突变负担低,限制了可靶向的新抗原的丰度;以及免疫“冷”肿瘤微环境阻碍了持续和有效的免疫反应的产生。mRNA 治疗领域在 COVID-19 mRNA 疫苗获得普遍批准后经历了繁荣。mRNA 免疫疗法也因其有可能彻底改变癌症治疗而引起广泛关注。在这项研究中,我们开发了一种新颖且可扩展的方法,用于生产针对多种肿瘤排斥抗原的个性化 mRNA 治疗药物,以单一疗法治疗难治性脑肿瘤。
方法:使用我们称为开放阅读框抗原网络 (O.R.A.N) 的癌症免疫基因组学管道,鉴定出胶质母细胞瘤和髓母细胞瘤肿瘤的肿瘤特异性新抗原和异常过表达的肿瘤相关抗原。使用选择性基因捕获和富集策略为每个肿瘤模型开发个性化的肿瘤抗原特异性 mRNA 疫苗。在高度侵袭性的小鼠 GBM 模型中,结合抗 PD-1 免疫检查点阻断治疗或体外扩增的肿瘤抗原特异性淋巴细胞的过继细胞治疗,评估个性化 mRNA 疫苗的免疫原性和疗效。
结果:我们的结果表明,抗原特异性 mRNA 疫苗在 GBM 宿主中引发强大的抗肿瘤免疫反应是有效的。我们的发现证实了抗原特异性 mRNA 定向免疫治疗后肿瘤内浸润淋巴细胞数量增加,并且具有增强的效应功能,无论是在肿瘤内还是系统内,导致肿瘤微环境从免疫冷到热的有利转变。还证明了针对人类 GBM 抗原生成个性化 mRNA 疫苗的能力。
结论:我们已经建立了一种个性化和可定制的 mRNA 治疗方法,该方法有效地靶向多种肿瘤抗原,并在临床前脑肿瘤模型中显示出强大的抗肿瘤反应。该平台 mRNA 技术独特地解决了肿瘤异质性和低抗原负担这两个挑战,这是靶向经典免疫治疗抵抗的中枢神经系统恶性肿瘤的两个关键缺陷,并且可能是其他冷肿瘤类型。
Adv Exp Med Biol. 2023
Expert Rev Vaccines. 2020-5
Cancer Lett. 2022-12-1
Vaccines (Basel). 2025-8-20
Chin Med J (Engl). 2025-9-5
Front Immunol. 2025-7-17
Front Immunol. 2025-7-3
Front Immunol. 2025-5-19
Vaccines (Basel). 2025-4-28
Neurooncol Adv. 2024-12-7
Lancet Oncol. 2022-10
Nat Commun. 2022-1-11
Cancer Cell Int. 2021-7-21
Neuromolecular Med. 2022-3
Cell. 2021-6-24