文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 mRNA 的恶性脑肿瘤中新抗原和肿瘤相关抗原的精准靶向治疗。

mRNA-based precision targeting of neoantigens and tumor-associated antigens in malignant brain tumors.

机构信息

University of Florida, 1333 Center Drive, BSB B1-118, Gainesville, FL, 32610, USA.

Boston Medical Center, Boston, MA, USA.

出版信息

Genome Med. 2024 Jan 25;16(1):17. doi: 10.1186/s13073-024-01281-z.


DOI:10.1186/s13073-024-01281-z
PMID:38268001
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10809449/
Abstract

BACKGROUND: Despite advancements in the successful use of immunotherapy in treating a variety of solid tumors, applications in treating brain tumors have lagged considerably. This is due, at least in part, to the lack of well-characterized antigens expressed within brain tumors that can mediate tumor rejection; the low mutational burden of these tumors that limits the abundance of targetable neoantigens; and the immunologically "cold" tumor microenvironment that hampers the generation of sustained and productive immunologic responses. The field of mRNA-based therapeutics has experienced a boon following the universal approval of COVID-19 mRNA vaccines. mRNA-based immunotherapeutics have also garnered widespread interest for their potential to revolutionize cancer treatment. In this study, we developed a novel and scalable approach for the production of personalized mRNA-based therapeutics that target multiple tumor rejection antigens in a single therapy for the treatment of refractory brain tumors. METHODS: Tumor-specific neoantigens and aberrantly overexpressed tumor-associated antigens were identified for glioblastoma and medulloblastoma tumors using our cancer immunogenomics pipeline called Open Reading Frame Antigen Network (O.R.A.N). Personalized tumor antigen-specific mRNA vaccine was developed for each individual tumor model using selective gene capture and enrichment strategy. The immunogenicity and efficacy of the personalized mRNA vaccines was evaluated in combination with anti-PD-1 immune checkpoint blockade therapy or adoptive cellular therapy with ex vivo expanded tumor antigen-specific lymphocytes in highly aggressive murine GBM models. RESULTS: Our results demonstrate the effectiveness of the antigen-specific mRNA vaccines in eliciting robust anti-tumor immune responses in GBM hosts. Our findings substantiate an increase in tumor-infiltrating lymphocytes characterized by enhanced effector function, both intratumorally and systemically, after antigen-specific mRNA-directed immunotherapy, resulting in a favorable shift in the tumor microenvironment from immunologically cold to hot. Capacity to generate personalized mRNA vaccines targeting human GBM antigens was also demonstrated. CONCLUSIONS: We have established a personalized and customizable mRNA-therapeutic approach that effectively targets a plurality of tumor antigens and demonstrated potent anti-tumor response in preclinical brain tumor models. This platform mRNA technology uniquely addresses the challenge of tumor heterogeneity and low antigen burden, two key deficiencies in targeting the classically immunotherapy-resistant CNS malignancies, and possibly other cold tumor types.

摘要

背景:尽管免疫疗法在治疗多种实体瘤方面取得了成功,但在治疗脑肿瘤方面的应用却大大滞后。这至少部分是由于脑肿瘤中缺乏能够介导肿瘤排斥的特征明确的抗原;这些肿瘤的突变负担低,限制了可靶向的新抗原的丰度;以及免疫“冷”肿瘤微环境阻碍了持续和有效的免疫反应的产生。mRNA 治疗领域在 COVID-19 mRNA 疫苗获得普遍批准后经历了繁荣。mRNA 免疫疗法也因其有可能彻底改变癌症治疗而引起广泛关注。在这项研究中,我们开发了一种新颖且可扩展的方法,用于生产针对多种肿瘤排斥抗原的个性化 mRNA 治疗药物,以单一疗法治疗难治性脑肿瘤。

方法:使用我们称为开放阅读框抗原网络 (O.R.A.N) 的癌症免疫基因组学管道,鉴定出胶质母细胞瘤和髓母细胞瘤肿瘤的肿瘤特异性新抗原和异常过表达的肿瘤相关抗原。使用选择性基因捕获和富集策略为每个肿瘤模型开发个性化的肿瘤抗原特异性 mRNA 疫苗。在高度侵袭性的小鼠 GBM 模型中,结合抗 PD-1 免疫检查点阻断治疗或体外扩增的肿瘤抗原特异性淋巴细胞的过继细胞治疗,评估个性化 mRNA 疫苗的免疫原性和疗效。

结果:我们的结果表明,抗原特异性 mRNA 疫苗在 GBM 宿主中引发强大的抗肿瘤免疫反应是有效的。我们的发现证实了抗原特异性 mRNA 定向免疫治疗后肿瘤内浸润淋巴细胞数量增加,并且具有增强的效应功能,无论是在肿瘤内还是系统内,导致肿瘤微环境从免疫冷到热的有利转变。还证明了针对人类 GBM 抗原生成个性化 mRNA 疫苗的能力。

结论:我们已经建立了一种个性化和可定制的 mRNA 治疗方法,该方法有效地靶向多种肿瘤抗原,并在临床前脑肿瘤模型中显示出强大的抗肿瘤反应。该平台 mRNA 技术独特地解决了肿瘤异质性和低抗原负担这两个挑战,这是靶向经典免疫治疗抵抗的中枢神经系统恶性肿瘤的两个关键缺陷,并且可能是其他冷肿瘤类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/06bcef242114/13073_2024_1281_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/fd6094bd2714/13073_2024_1281_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/3b05cc4b85ed/13073_2024_1281_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/faba2aace19a/13073_2024_1281_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/46e5fee14ca5/13073_2024_1281_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/a9943e23a03f/13073_2024_1281_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/d784db3b25c8/13073_2024_1281_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/06bcef242114/13073_2024_1281_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/fd6094bd2714/13073_2024_1281_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/3b05cc4b85ed/13073_2024_1281_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/faba2aace19a/13073_2024_1281_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/46e5fee14ca5/13073_2024_1281_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/a9943e23a03f/13073_2024_1281_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/d784db3b25c8/13073_2024_1281_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb0/10809449/06bcef242114/13073_2024_1281_Fig7_HTML.jpg

相似文献

[1]
mRNA-based precision targeting of neoantigens and tumor-associated antigens in malignant brain tumors.

Genome Med. 2024-1-25

[2]
Identification of tumor rejection antigens and the immunologic landscape of medulloblastoma.

Genome Med. 2024-8-19

[3]
Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine.

Neuro Oncol. 2020-9-29

[4]
Immunotherapy as a New Therapeutic Approach for Brain and Spinal Cord Tumors.

Adv Exp Med Biol. 2023

[5]
Identification of Tumor Antigens and Immune Subtypes of Glioblastoma for mRNA Vaccine Development.

Front Immunol. 2022

[6]
Personalized neoantigen vaccines: a glimmer of hope for glioblastoma.

Expert Rev Vaccines. 2020-5

[7]
Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma.

Mol Cancer. 2021-12-6

[8]
Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors.

Nat Commun. 2021-11-18

[9]
Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation.

Genome Med. 2021-4-21

[10]
Neoantigen discovery and applications in glioblastoma: An immunotherapy perspective.

Cancer Lett. 2022-12-1

引用本文的文献

[1]
Decrypting the Immune Symphony for RNA Vaccines.

Vaccines (Basel). 2025-8-20

[2]
Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.

Chin Med J (Engl). 2025-9-5

[3]
Harnessing immunotherapy: cancer vaccines as novel therapeutic strategies for brain tumor.

Front Immunol. 2025-7-17

[4]
Medulloblastoma: biology and immunotherapy.

Front Immunol. 2025-7-3

[5]
Research progress on tumor-infiltrating lymphocyte therapy for cervical cancer.

Front Immunol. 2025-5-19

[6]
Considerations for mRNA Product Development, Regulation and Deployment Across the Lifecycle.

Vaccines (Basel). 2025-4-28

[7]
Immunotherapy-related cognitive impairment after CAR T cell therapy in mice.

Cell. 2025-5-7

[8]
Technological breakthroughs and advancements in the application of mRNA vaccines: a comprehensive exploration and future prospects.

Front Immunol. 2025-3-4

[9]
Unlocking the secrets of the immunopeptidome: MHC molecules, ncRNA peptides, and vesicles in immune response.

Front Immunol. 2025-1-29

[10]
Immunocompetent murine glioblastoma stem-like cell models exhibiting distinct phenotypes.

Neurooncol Adv. 2024-12-7

本文引用的文献

[1]
Clinical advances and ongoing trials on mRNA vaccines for cancer treatment.

Lancet Oncol. 2022-10

[2]
Tumor antigens and immune subtypes of glioblastoma: the fundamentals of mRNA vaccine and individualized immunotherapy development.

J Big Data. 2022

[3]
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them.

Br J Cancer. 2022-10

[4]
Effects of immune checkpoint blockade on antigen-specific CD8 T cells for use in adoptive cellular therapy.

Microbiol Immunol. 2022-5

[5]
Zero-preserving imputation of single-cell RNA-seq data.

Nat Commun. 2022-1-11

[6]
Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma.

Nat Commun. 2021-11-26

[7]
Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors.

Nat Commun. 2021-11-18

[8]
New insights into M1/M2 macrophages: key modulators in cancer progression.

Cancer Cell Int. 2021-7-21

[9]
Contemporary RNA Therapeutics for Glioblastoma.

Neuromolecular Med. 2022-3

[10]
Integrated analysis of multimodal single-cell data.

Cell. 2021-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索