Li Xiao-Han, Yu Conny W H, Gomez-Navarro Natalia, Stancheva Viktoriya, Zhu Hongni, Murthy Andal, Wozny Michael, Malhotra Ketan, Johnson Christopher M, Blackledge Martin, Santhanam Balaji, Liu Wei, Huang Jinqing, Freund Stefan M V, Miller Elizabeth A, Babu M Madan
MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
PNAS Nexus. 2024 Jan 18;3(1):pgae006. doi: 10.1093/pnasnexus/pgae006. eCollection 2024 Jan.
A number of intrinsically disordered proteins (IDPs) encoded in stress-tolerant organisms, such as tardigrade, can confer fitness advantage and abiotic stress tolerance when heterologously expressed. Tardigrade-specific disordered proteins including the cytosolic-abundant heat-soluble proteins are proposed to confer stress tolerance through vitrification or gelation, whereas evolutionarily conserved IDPs in tardigrades may contribute to stress tolerance through other biophysical mechanisms. In this study, we characterized the mechanism of action of an evolutionarily conserved, tardigrade IDP, HeLEA1, which belongs to the group-3 late embryogenesis abundant (LEA) protein family. HeLEA1 homologs are found across different kingdoms of life. HeLEA1 is intrinsically disordered in solution but shows a propensity for helical structure across its entire sequence. HeLEA1 interacts with negatively charged membranes via dynamic disorder-to-helical transition, mainly driven by electrostatic interactions. Membrane interaction of HeLEA1 is shown to ameliorate excess surface tension and lipid packing defects. HeLEA1 localizes to the mitochondrial matrix when expressed in yeast and interacts with model membranes mimicking inner mitochondrial membrane. Yeast expressing HeLEA1 shows enhanced tolerance to hyperosmotic stress under nonfermentative growth and increased mitochondrial membrane potential. Evolutionary analysis suggests that although HeLEA1 homologs have diverged their sequences to localize to different subcellular organelles, all homologs maintain a weak hydrophobic moment that is characteristic of weak and reversible membrane interaction. We suggest that such dynamic and weak protein-membrane interaction buffering alterations in lipid packing could be a conserved strategy for regulating membrane properties and represent a general biophysical solution for stress tolerance across the domains of life.
一些在耐逆生物(如水熊虫)中编码的内在无序蛋白(IDP),当在异源表达时可赋予适应性优势和非生物胁迫耐受性。包括胞质丰富的热溶性蛋白在内的水熊虫特异性无序蛋白被认为通过玻璃化或凝胶化赋予胁迫耐受性,而水熊虫中进化保守的IDP可能通过其他生物物理机制促进胁迫耐受性。在本研究中,我们对一种进化保守的水熊虫IDP——HeLEA1的作用机制进行了表征,HeLEA1属于第3组成熟胚胎晚期丰富(LEA)蛋白家族。HeLEA1同源物存在于不同的生命王国中。HeLEA1在溶液中是内在无序的,但在其整个序列中显示出形成螺旋结构的倾向。HeLEA1通过动态的无序到螺旋转变与带负电荷的膜相互作用,主要由静电相互作用驱动。HeLEA1与膜的相互作用被证明可改善过量的表面张力和脂质堆积缺陷。当在酵母中表达时,HeLEA1定位于线粒体基质,并与模拟线粒体内膜的模型膜相互作用。表达HeLEA1的酵母在非发酵生长条件下对高渗胁迫的耐受性增强,线粒体膜电位增加。进化分析表明,尽管HeLEA1同源物的序列已经分化以定位于不同的亚细胞细胞器,但所有同源物都保持着微弱的疏水矩,这是弱的和可逆的膜相互作用的特征。我们认为,这种动态且微弱的蛋白质-膜相互作用缓冲脂质堆积的变化可能是调节膜性质的一种保守策略,并且代表了跨生命域的胁迫耐受性的一种普遍生物物理解决方案。