Suppr超能文献

水熊虫耐受蛋白通过形成纤维状网络和凝胶来实现对细胞的应激依赖的刚性变化,该过程是可逆的。

Stress-dependent cell stiffening by tardigrade tolerance proteins that reversibly form a filamentous network and gel.

机构信息

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.

Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.

出版信息

PLoS Biol. 2022 Sep 6;20(9):e3001780. doi: 10.1371/journal.pbio.3001780. eCollection 2022 Sep.

Abstract

Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.

摘要

缓步动物能够通过进入一种可逆的非代谢状态,即所谓的无水休眠,从而耐受几乎完全脱水,并在重新水合时恢复其活力。脱水的缓步动物非常稳定,能够承受各种物理极端条件。虽然海藻糖和晚期胚胎丰富蛋白(LEA)已被广泛研究为其他无水生物中抵抗脱水的有效保护剂,但缓步动物会产生大量独特的缓步动物保护蛋白。细胞质丰富的热可溶性(CAHS)蛋白是在真缓步动物的谱系中独特发明的,真缓步动物是缓步动物门的一个主要类群,对其无水生存至关重要。然而,它们在这种保护作用中的确切作用机制尚不完全清楚。在本研究中,我们首先假设存在耐受蛋白,这些蛋白通过相分离形成保护性凝聚物,并且这种凝聚物的形成依赖于应激,我们还搜索了在类似脱水应激下可可逆形成凝聚物的缓步动物蛋白。通过使用去溶剂三氟乙醇(TFE)的全面搜索,我们鉴定了 336 种蛋白,统称为“TFE 依赖性可反向凝聚蛋白(T-DRYPs)”。出乎意料的是,我们重新发现 CAHS 蛋白是 T-DRYPs 中的高度富集蛋白,其中 3 种是 T-DRYPs 的主要成分。我们揭示了这些 CAHS 蛋白在培养细胞中受到高渗应激时可逆地聚合形成许多类似细胞骨架的纤维,并在体外发生可逆的凝胶转变。此外,CAHS 蛋白在高渗应激依赖性方式下增加细胞硬度,抵抗渗透压引起的细胞收缩,甚至提高对高渗应激的生存能力。保守的假定螺旋 C 端区域对于 CAHS 蛋白的纤维形成是必需和充分的,破坏该区域二级结构的突变会损害纤维形成和凝胶转变。基于这些结果,我们提出 CAHS 蛋白是新型的细胞骨架样蛋白,它们在应激依赖性方式下形成纤维状网络并发生凝胶转变,为脱水过程中对抗变形力提供按需的物理稳定细胞完整性,并有助于在脱水状态下具有非凡的物理稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d6a/9592077/dbd64ba7772c/pbio.3001780.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验