Suppr超能文献

基于 GRU 集成注意力机制的生物医学事件抽取。

Biomedical event extraction based on GRU integrating attention mechanism.

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian, China.

出版信息

BMC Bioinformatics. 2018 Aug 13;19(Suppl 9):285. doi: 10.1186/s12859-018-2275-2.

Abstract

BACKGROUND

Biomedical event extraction is a crucial task in biomedical text mining. As the primary forum for international evaluation of different biomedical event extraction technologies, BioNLP Shared Task represents a trend in biomedical text mining toward fine-grained information extraction (IE). The fourth series of BioNLP Shared Task in 2016 (BioNLP-ST'16) proposed three tasks, in which the Bacteria Biotope event extraction (BB) task has been put forward in the earlier BioNLP-ST. Deep learning methods provide an effective way to automatically extract more complex features and achieve notable results in various natural language processing tasks.

RESULTS

The experimental results show that the presented approach can achieve an F-score of 57.42% in the test set, which outperforms previous state-of-the-art official submissions to BioNLP-ST 2016.

CONCLUSIONS

In this paper, we propose a novel Gated Recurrent Unit Networks framework integrating attention mechanism for extracting biomedical events between biotope and bacteria from biomedical literature, utilizing the corpus from the BioNLP'16 Shared Task on Bacteria Biotope task. The experimental results demonstrate the potential and effectiveness of the proposed framework.

摘要

背景

生物医学事件抽取是生物医学文本挖掘中的一项关键任务。作为不同生物医学事件抽取技术国际评估的主要论坛,BioNLP 共享任务代表了生物医学文本挖掘向细粒度信息抽取(IE)的发展趋势。2016 年第四届 BioNLP 共享任务(BioNLP-ST'16)提出了三项任务,其中细菌生境事件抽取(BB)任务在早期的 BioNLP-ST 中已经提出。深度学习方法为自动提取更复杂的特征提供了一种有效途径,并在各种自然语言处理任务中取得了显著的成果。

结果

实验结果表明,所提出的方法在测试集上可以达到 57.42%的 F 值,优于之前提交给 BioNLP-ST 2016 的最新官方结果。

结论

本文提出了一种新的门控循环单元网络框架,该框架结合了注意力机制,用于从生物医学文献中提取生物生境和细菌之间的生物医学事件,利用了 BioNLP'16 共享任务中细菌生境任务的语料库。实验结果证明了所提出框架的潜力和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b2/6101075/6a29085d1e8e/12859_2018_2275_Fig1_HTML.jpg

相似文献

1
Biomedical event extraction based on GRU integrating attention mechanism.
BMC Bioinformatics. 2018 Aug 13;19(Suppl 9):285. doi: 10.1186/s12859-018-2275-2.
2
Unsupervised inference of implicit biomedical events using context triggers.
BMC Bioinformatics. 2020 Jan 28;21(1):29. doi: 10.1186/s12859-020-3341-0.
3
Detection and categorization of bacteria habitats using shallow linguistic analysis.
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S5. doi: 10.1186/1471-2105-16-S10-S5. Epub 2015 Jul 13.
4
Overview of the gene regulation network and the bacteria biotope tasks in BioNLP'13 shared task.
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S1. doi: 10.1186/1471-2105-16-S10-S1. Epub 2015 Jul 13.
5
The contribution of co-reference resolution to supervised relation detection between bacteria and biotopes entities.
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S6. doi: 10.1186/1471-2105-16-S10-S6. Epub 2015 Jul 13.
6
Structured learning for spatial information extraction from biomedical text: bacteria biotopes.
BMC Bioinformatics. 2015 Apr 25;16:129. doi: 10.1186/s12859-015-0542-z.
8
Active learning for ontological event extraction incorporating named entity recognition and unknown word handling.
J Biomed Semantics. 2016 Apr 27;7:22. doi: 10.1186/s13326-016-0059-z. eCollection 2016.
10
Contextual label sensitive gated network for biomedical event trigger extraction.
J Biomed Inform. 2019 Jul;95:103221. doi: 10.1016/j.jbi.2019.103221. Epub 2019 Jun 5.

引用本文的文献

1
Knowledge discovery of diseases symptoms and rehabilitation measures in Q&A communities.
Sci Rep. 2025 Apr 19;15(1):13593. doi: 10.1038/s41598-025-98300-9.
3
Biomedical event argument detection method based on multi-feature fusion and question-answer paradigm.
Heliyon. 2024 Jul 21;10(15):e34057. doi: 10.1016/j.heliyon.2024.e34057. eCollection 2024 Aug 15.
4
Attention-assisted hybrid CNN-BILSTM-BiGRU model with SMOTE-Tomek method to detect cardiac arrhythmia based on 12lead electrocardiogram signals.
Digit Health. 2024 Mar 5;10:20552076241234624. doi: 10.1177/20552076241234624. eCollection 2024 Jan-Dec.
5
Disease- and Drug-Related Knowledge Extraction for Health Management from Online Health Communities Based on BERT-BiGRU-ATT.
Int J Environ Res Public Health. 2022 Dec 9;19(24):16590. doi: 10.3390/ijerph192416590.
7
DeepMPM: a mortality risk prediction model using longitudinal EHR data.
BMC Bioinformatics. 2022 Oct 14;23(1):423. doi: 10.1186/s12859-022-04975-6.
8
A biomedical event extraction method based on fine-grained and attention mechanism.
BMC Bioinformatics. 2022 Jul 29;23(1):308. doi: 10.1186/s12859-022-04854-0.
9
A Structure-Based B-cell Epitope Prediction Model Through Combing Local and Global Features.
Front Immunol. 2022 Jul 1;13:890943. doi: 10.3389/fimmu.2022.890943. eCollection 2022.
10
Event Scene Method of Legal Domain Knowledge Map Based on Neural Network Hybrid Model.
Appl Bionics Biomech. 2022 Jun 18;2022:5880595. doi: 10.1155/2022/5880595. eCollection 2022.

本文引用的文献

1
Bidirectional RNN for Medical Event Detection in Electronic Health Records.
Proc Conf. 2016 Jun;2016:473-482. doi: 10.18653/v1/n16-1056.
2
Overview of the gene regulation network and the bacteria biotope tasks in BioNLP'13 shared task.
BMC Bioinformatics. 2015;16 Suppl 10(Suppl 10):S1. doi: 10.1186/1471-2105-16-S10-S1. Epub 2015 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验