School of Computer Science and Technology, Dalian University of Technology, Dalian, China.
BMC Bioinformatics. 2018 Aug 13;19(Suppl 9):285. doi: 10.1186/s12859-018-2275-2.
Biomedical event extraction is a crucial task in biomedical text mining. As the primary forum for international evaluation of different biomedical event extraction technologies, BioNLP Shared Task represents a trend in biomedical text mining toward fine-grained information extraction (IE). The fourth series of BioNLP Shared Task in 2016 (BioNLP-ST'16) proposed three tasks, in which the Bacteria Biotope event extraction (BB) task has been put forward in the earlier BioNLP-ST. Deep learning methods provide an effective way to automatically extract more complex features and achieve notable results in various natural language processing tasks.
The experimental results show that the presented approach can achieve an F-score of 57.42% in the test set, which outperforms previous state-of-the-art official submissions to BioNLP-ST 2016.
In this paper, we propose a novel Gated Recurrent Unit Networks framework integrating attention mechanism for extracting biomedical events between biotope and bacteria from biomedical literature, utilizing the corpus from the BioNLP'16 Shared Task on Bacteria Biotope task. The experimental results demonstrate the potential and effectiveness of the proposed framework.
生物医学事件抽取是生物医学文本挖掘中的一项关键任务。作为不同生物医学事件抽取技术国际评估的主要论坛,BioNLP 共享任务代表了生物医学文本挖掘向细粒度信息抽取(IE)的发展趋势。2016 年第四届 BioNLP 共享任务(BioNLP-ST'16)提出了三项任务,其中细菌生境事件抽取(BB)任务在早期的 BioNLP-ST 中已经提出。深度学习方法为自动提取更复杂的特征提供了一种有效途径,并在各种自然语言处理任务中取得了显著的成果。
实验结果表明,所提出的方法在测试集上可以达到 57.42%的 F 值,优于之前提交给 BioNLP-ST 2016 的最新官方结果。
本文提出了一种新的门控循环单元网络框架,该框架结合了注意力机制,用于从生物医学文献中提取生物生境和细菌之间的生物医学事件,利用了 BioNLP'16 共享任务中细菌生境任务的语料库。实验结果证明了所提出框架的潜力和有效性。