Suppr超能文献

DL4Burn:使用多模态深度学习进行烧伤手术候选预测。

DL4Burn: Burn Surgical Candidacy Prediction using Multimodal Deep Learning.

机构信息

Computer Science Department, University of Southern California, Los Angeles, CA, U.S.A.

Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:1039-1048. eCollection 2021.

Abstract

Burn wounds are most commonly evaluated through visual inspection to determine surgical candidacy, taking into account burn depth and individualized patient factors. This process, though cost effective, is subjective and varies by provider experience. Deep learning models can assist in burn wound surgical candidacy with predictions based on the wound and patient characteristics. To this end, we present a multimodal deep learning approach and a complementary mobile application - DL4Burn - for predicting burn surgical candidacy, to emulate the multi-factored approach used by clinicians. Specifically, we propose a ResNet50-based multimodal model and validate it using retrospectively obtained patient burn images, demographic, and injury data.

摘要

烧伤创面通常通过目视检查进行评估,以确定手术适应证,考虑烧伤深度和个体化患者因素。虽然这种方法具有成本效益,但它是主观的,并且因提供者的经验而异。深度学习模型可以通过基于伤口和患者特征的预测来辅助烧伤创面手术适应证的判断。为此,我们提出了一种多模态深度学习方法和一个配套的移动应用程序 DL4Burn,用于预测烧伤手术适应证,以模拟临床医生使用的多因素方法。具体来说,我们提出了一种基于 ResNet50 的多模态模型,并使用回顾性获得的患者烧伤图像、人口统计学和损伤数据对其进行验证。

相似文献

1
DL4Burn: Burn Surgical Candidacy Prediction using Multimodal Deep Learning.
AMIA Annu Symp Proc. 2022 Feb 21;2021:1039-1048. eCollection 2021.
2
BPBSAM: Body part-specific burn severity assessment model.
Burns. 2020 Sep;46(6):1407-1423. doi: 10.1016/j.burns.2020.03.007. Epub 2020 May 4.
5
Deep Learning-Assisted Burn Wound Diagnosis: Diagnostic Model Development Study.
JMIR Med Inform. 2021 Dec 2;9(12):e22798. doi: 10.2196/22798.
6
A systematic review of machine learning and automation in burn wound evaluation: A promising but developing frontier.
Burns. 2021 Dec;47(8):1691-1704. doi: 10.1016/j.burns.2021.07.007. Epub 2021 Jul 15.
9
Time-Independent Prediction of Burn Depth Using Deep Convolutional Neural Networks.
J Burn Care Res. 2019 Oct 16;40(6):857-863. doi: 10.1093/jbcr/irz103.

引用本文的文献

本文引用的文献

1
Real-time burn depth assessment using artificial networks: a large-scale, multicentre study.
Burns. 2020 Dec;46(8):1829-1838. doi: 10.1016/j.burns.2020.07.010. Epub 2020 Jul 25.
2
BPBSAM: Body part-specific burn severity assessment model.
Burns. 2020 Sep;46(6):1407-1423. doi: 10.1016/j.burns.2020.03.007. Epub 2020 May 4.
3
Skin lesion classification using ensembles of multi-resolution EfficientNets with meta data.
MethodsX. 2020 Mar 19;7:100864. doi: 10.1016/j.mex.2020.100864. eCollection 2020.
4
Feature Extraction Based Machine Learning for Human Burn Diagnosis From Burn Images.
IEEE J Transl Eng Health Med. 2019 Jul 18;7:1800507. doi: 10.1109/JTEHM.2019.2923628. eCollection 2019.
5
MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework.
Front Genet. 2019 Jun 28;10:617. doi: 10.3389/fgene.2019.00617. eCollection 2019.
6
Burn wound classification model using spatial frequency-domain imaging and machine learning.
J Biomed Opt. 2019 May;24(5):1-9. doi: 10.1117/1.JBO.24.5.056007.
7
Tensor Decomposition for Colour Image Segmentation of Burn Wounds.
Sci Rep. 2019 Mar 1;9(1):3291. doi: 10.1038/s41598-019-39782-2.
8
Predicting Alzheimer's disease progression using multi-modal deep learning approach.
Sci Rep. 2019 Feb 13;9(1):1952. doi: 10.1038/s41598-018-37769-z.
10
Changing the Way We Think About Burn Size Estimation.
J Burn Care Res. 2019 Jan 1;40(1):1-11. doi: 10.1093/jbcr/iry050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验