Suppr超能文献

基于术前全身炎症的列线图预测结直肠癌患者手术部位感染的开发与验证

Development and validation of a preoperative systemic inflammation-based nomogram for predicting surgical site infection in patients with colorectal cancer.

作者信息

Mao Fuwei, Song Mingming, Cao Yinghao, Shen Liming, Cai Kailin

机构信息

Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Department of General Surgery, Hefei Second People's Hospital affiliated to Bengbu Medical University, Hefei, 230011, Anhui, China.

出版信息

Int J Colorectal Dis. 2024 Dec 21;39(1):208. doi: 10.1007/s00384-024-04772-y.

Abstract

BACKGROUND

Surgical site infection (SSI) represents a significant postoperative complication in colorectal cancer (CRC). Identifying associated factors is therefore critical. We evaluated the predictive value of clinicopathological features and inflammation-based prognostic scores (IBPSs) for SSI occurrence in CRC patients.

METHODS

We retrospectively analyzed data from 1445 CRC patients who underwent resection surgery at Wuhan Union Hospital between January 2015 and December 2018. We applied two algorithms, least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), to identify key predictors. Participants were randomly divided into training (n = 1043) and validation (n = 402) cohorts. A nomogram was constructed to estimate SSI risk, and its performance was assessed by calibration, discrimination, and clinical utility.

RESULTS

Combining the 30 clinicopathological features identified by LASSO and SVM-RFE, we pinpointed seven variables as optimal predictors for a pathology-based nomogram: obstruction, dNLR, ALB, HGB, ALT, CA199, and CA125. The model demonstrated strong calibration and discrimination, with an area under the curve (AUC) of 0.838 (95% CI 0.799-0.876) in the training cohort and 0.793 (95% CI 0.732-0.865) in the validation cohort. Decision curve analysis (DCA) showed that our models provided greater predictive benefit than individual clinical markers.

CONCLUSION

The model based on simplified clinicopathological features in combination with IBPSs is useful in predicting SSI for CRC patients.

摘要

背景

手术部位感染(SSI)是结直肠癌(CRC)术后的一种重要并发症。因此,识别相关因素至关重要。我们评估了临床病理特征和基于炎症的预后评分(IBPSs)对CRC患者SSI发生的预测价值。

方法

我们回顾性分析了2015年1月至2018年12月在武汉协和医院接受切除手术的1445例CRC患者的数据。我们应用两种算法,即最小绝对收缩和选择算子(LASSO)以及支持向量机递归特征消除(SVM-RFE)来识别关键预测因子。参与者被随机分为训练组(n = 1043)和验证组(n = 402)。构建了一个列线图来估计SSI风险,并通过校准、鉴别和临床实用性评估其性能。

结果

结合LASSO和SVM-RFE确定的30个临床病理特征,我们确定了七个变量作为基于病理的列线图的最佳预测因子:梗阻、dNLR、ALB、HGB、ALT、CA199和CA125。该模型显示出很强的校准和鉴别能力,训练组的曲线下面积(AUC)为0.838(95%CI 0.799-0.876),验证组为0.793(95%CI 0.732-0.865)。决策曲线分析(DCA)表明,我们的模型比个体临床标志物提供了更大的预测益处。

结论

基于简化临床病理特征结合IBPSs的模型有助于预测CRC患者的SSI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4baa/11662059/b0b0ec0ace54/384_2024_4772_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验