Suppr超能文献

全景成像在机器学习模型开发中的误差:系统综述。

Panoramic imaging errors in machine learning model development: a systematic review.

机构信息

Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.

Digital Health and Data Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.

出版信息

Dentomaxillofac Radiol. 2024 Mar 25;53(3):165-172. doi: 10.1093/dmfr/twae002.

Abstract

OBJECTIVES

To investigate the management of imaging errors from panoramic radiography (PAN) datasets used in the development of machine learning (ML) models.

METHODS

This systematic literature followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and used three databases. Keywords were selected from relevant literature.

ELIGIBILITY CRITERIA

PAN studies that used ML models and mentioned image quality concerns.

RESULTS

Out of 400 articles, 41 papers satisfied the inclusion criteria. All the studies used ML models, with 35 papers using deep learning (DL) models. PAN quality assessment was approached in 3 ways: acknowledgement and acceptance of imaging errors in the ML model, removal of low-quality radiographs from the dataset before building the model, and application of image enhancement methods prior to model development. The criteria for determining PAN image quality varied widely across studies and were prone to bias.

CONCLUSIONS

This study revealed significant inconsistencies in the management of PAN imaging errors in ML research. However, most studies agree that such errors are detrimental when building ML models. More research is needed to understand the impact of low-quality inputs on model performance. Prospective studies may streamline image quality assessment by leveraging DL models, which excel at pattern recognition tasks.

摘要

目的

研究在机器学习 (ML) 模型开发中使用的全景放射摄影 (PAN) 数据集的成像误差管理。

方法

本系统文献综述遵循系统评价和荟萃分析的首选报告项目,并使用了三个数据库。从相关文献中选择了关键字。

纳入标准

使用 ML 模型并提及图像质量问题的 PAN 研究。

结果

在 400 篇文章中,有 41 篇符合纳入标准。所有研究均使用 ML 模型,其中 35 篇使用深度学习 (DL) 模型。PAN 质量评估有 3 种方法:在 ML 模型中承认和接受成像误差、在构建模型之前从数据集删除低质量射线照片,以及在模型开发之前应用图像增强方法。确定 PAN 图像质量的标准在研究之间差异很大,容易出现偏差。

结论

本研究表明,在 ML 研究中,PAN 成像误差的管理存在显著不一致。然而,大多数研究都认为,在构建 ML 模型时,这些误差是有害的。需要进一步研究以了解低质量输入对模型性能的影响。前瞻性研究可以通过利用擅长模式识别任务的 DL 模型来简化图像质量评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7a5/11003661/35ccb71ee7b5/twae002f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验