Žugelj Nina, Peterlin Lara, Muznik Urša, Klobučar Pia, Jaki Mekjavić Polona, Vidović Valentinčić Nataša, Fakin Ana
Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
J Clin Med. 2024 Jan 22;13(2):636. doi: 10.3390/jcm13020636.
Face recognition is one of the most serious disabilities of patients with age-related macular degeneration (AMD). Our purpose was to study face recognition using a novel method incorporating virtual reality (VR) and eye tracking.
Eighteen patients with AMD (seven male; median age 83 years; 89% with bilateral advanced AMD) and nineteen healthy controls (five male; median age 68 years) underwent the face recognition test IC FACES (Synthesius, Ljubljna, Slovenia) on a VR headset with built-in eye tracking sensors. Analysis included recognition accuracy, recognition time and fixation patterns. Additionally, a screening test for dementia and imaging with fundus autofluorescence and optical coherence tomography was performed.
AMD patients had significantly lower face recognition accuracy (42% vs. 92%; < 0.001) and longer recognition time (median 4.0 vs. 2.0 s; < 0.001) in comparison to controls. Both parameters were significantly worse in patients with lower visual acuity. In both groups, eye-tracking data revealed the two classical characteristics of the face recognition process, i.e., fixations clustering mainly in the nose-eyes-mouth triangle and starting observation in the nasal area.
The study demonstrates usability of a VR headset with eye tracking for studying visual perception in real-world situations which could be applicable in the design of clinical studies.
人脸识别是年龄相关性黄斑变性(AMD)患者最严重的残疾之一。我们的目的是使用一种结合虚拟现实(VR)和眼动追踪的新方法来研究人脸识别。
18例AMD患者(7例男性;中位年龄83岁;89%为双侧晚期AMD)和19名健康对照者(5例男性;中位年龄68岁)在带有内置眼动追踪传感器的VR头戴式设备上进行了人脸识别测试IC FACES(Synthesius,卢布尔雅那,斯洛文尼亚)。分析包括识别准确率、识别时间和注视模式。此外,还进行了痴呆筛查测试以及眼底自发荧光和光学相干断层扫描成像。
与对照组相比,AMD患者的人脸识别准确率显著更低(42%对92%;<0.001),识别时间更长(中位时间4.0对2.0秒;<0.001)。这两个参数在视力较低患者中均显著更差。在两组中,眼动追踪数据均揭示了人脸识别过程的两个经典特征,即注视主要集中在鼻 - 眼 - 口三角区且从鼻部区域开始观察。
该研究证明了带有眼动追踪功能的VR头戴式设备在研究现实世界情境中视觉感知方面的可用性,这可能适用于临床研究设计。