Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nature. 2022 Apr;604(7905):323-329. doi: 10.1038/s41586-022-04546-y. Epub 2022 Apr 6.
Horizontal gene transfer can trigger rapid shifts in bacterial evolution. Driven by a variety of mobile genetic elements-in particular bacteriophages and plasmids-the ability to share genes within and across species underpins the exceptional adaptability of bacteria. Nevertheless, invasive mobile genetic elements can also present grave risks to the host; bacteria have therefore evolved a vast array of defences against these elements. Here we identify two plasmid defence systems conserved in the Vibrio cholerae El Tor strains responsible for the ongoing seventh cholera pandemic. These systems, termed DdmABC and DdmDE, are encoded on two major pathogenicity islands that are a hallmark of current pandemic strains. We show that the modules cooperate to rapidly eliminate small multicopy plasmids by degradation. Moreover, the DdmABC system is widespread and can defend against bacteriophage infection by triggering cell suicide (abortive infection, or Abi). Notably, we go on to show that, through an Abi-like mechanism, DdmABC increases the burden of large low-copy-number conjugative plasmids, including a broad-host IncC multidrug resistance plasmid, which creates a fitness disadvantage that counterselects against plasmid-carrying cells. Our results answer the long-standing question of why plasmids, although abundant in environmental strains, are rare in pandemic strains; have implications for understanding the dissemination of antibiotic resistance plasmids; and provide insights into how the interplay between two defence systems has shaped the evolution of the most successful lineage of pandemic V. cholerae.
水平基因转移可以引发细菌进化的快速转变。在各种移动遗传元件(尤其是噬菌体和质粒)的驱动下,细菌在种内和种间共享基因的能力是其非凡适应性的基础。然而,入侵性的移动遗传元件也会对宿主造成严重的威胁;因此,细菌进化出了大量防御这些元件的机制。在这里,我们鉴定了两种在导致当前第七次霍乱大流行的霍乱弧菌 El Tor 株中保守的质粒防御系统。这些系统被称为 DdmABC 和 DdmDE,它们编码在两个主要的致病性岛上,这是当前流行株的一个标志。我们表明,这些模块通过降解协同作用快速消除小的多拷贝质粒。此外,DdmABC 系统广泛存在,可以通过触发细胞自杀(流产感染或 Abi)来防御噬菌体感染。值得注意的是,我们继续表明,通过一种类似于 Abi 的机制,DdmABC 增加了大的低拷贝数的接合质粒的负担,包括广泛宿主的 IncC 多药耐药质粒,这会造成一种适应性劣势,从而选择不携带质粒的细胞。我们的研究结果回答了为什么质粒尽管在环境菌株中大量存在,但在流行株中却很少见这一长期存在的问题;对理解抗生素耐药质粒的传播具有重要意义;并为了解两个防御系统之间的相互作用如何塑造了最成功的霍乱弧菌流行谱系的进化提供了线索。