Suppr超能文献

两种防御系统可从第七次大流行霍乱弧菌中消除质粒。

Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae.

机构信息

Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

出版信息

Nature. 2022 Apr;604(7905):323-329. doi: 10.1038/s41586-022-04546-y. Epub 2022 Apr 6.

Abstract

Horizontal gene transfer can trigger rapid shifts in bacterial evolution. Driven by a variety of mobile genetic elements-in particular bacteriophages and plasmids-the ability to share genes within and across species underpins the exceptional adaptability of bacteria. Nevertheless, invasive mobile genetic elements can also present grave risks to the host; bacteria have therefore evolved a vast array of defences against these elements. Here we identify two plasmid defence systems conserved in the Vibrio cholerae El Tor strains responsible for the ongoing seventh cholera pandemic. These systems, termed DdmABC and DdmDE, are encoded on two major pathogenicity islands that are a hallmark of current pandemic strains. We show that the modules cooperate to rapidly eliminate small multicopy plasmids by degradation. Moreover, the DdmABC system is widespread and can defend against bacteriophage infection by triggering cell suicide (abortive infection, or Abi). Notably, we go on to show that, through an Abi-like mechanism, DdmABC increases the burden of large low-copy-number conjugative plasmids, including a broad-host IncC multidrug resistance plasmid, which creates a fitness disadvantage that counterselects against plasmid-carrying cells. Our results answer the long-standing question of why plasmids, although abundant in environmental strains, are rare in pandemic strains; have implications for understanding the dissemination of antibiotic resistance plasmids; and provide insights into how the interplay between two defence systems has shaped the evolution of the most successful lineage of pandemic V. cholerae.

摘要

水平基因转移可以引发细菌进化的快速转变。在各种移动遗传元件(尤其是噬菌体和质粒)的驱动下,细菌在种内和种间共享基因的能力是其非凡适应性的基础。然而,入侵性的移动遗传元件也会对宿主造成严重的威胁;因此,细菌进化出了大量防御这些元件的机制。在这里,我们鉴定了两种在导致当前第七次霍乱大流行的霍乱弧菌 El Tor 株中保守的质粒防御系统。这些系统被称为 DdmABC 和 DdmDE,它们编码在两个主要的致病性岛上,这是当前流行株的一个标志。我们表明,这些模块通过降解协同作用快速消除小的多拷贝质粒。此外,DdmABC 系统广泛存在,可以通过触发细胞自杀(流产感染或 Abi)来防御噬菌体感染。值得注意的是,我们继续表明,通过一种类似于 Abi 的机制,DdmABC 增加了大的低拷贝数的接合质粒的负担,包括广泛宿主的 IncC 多药耐药质粒,这会造成一种适应性劣势,从而选择不携带质粒的细胞。我们的研究结果回答了为什么质粒尽管在环境菌株中大量存在,但在流行株中却很少见这一长期存在的问题;对理解抗生素耐药质粒的传播具有重要意义;并为了解两个防御系统之间的相互作用如何塑造了最成功的霍乱弧菌流行谱系的进化提供了线索。

相似文献

1
Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae.
Nature. 2022 Apr;604(7905):323-329. doi: 10.1038/s41586-022-04546-y. Epub 2022 Apr 6.
3
pathogenicity island 2 encodes two distinct types of restriction systems.
J Bacteriol. 2024 Sep 19;206(9):e0014524. doi: 10.1128/jb.00145-24. Epub 2024 Aug 12.
5
Genomic plasticity associated with antimicrobial resistance in .
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6226-6231. doi: 10.1073/pnas.1900141116. Epub 2019 Mar 13.
9
Transcriptional Silencing by TsrA in the Evolution of Pathogenic Vibrio cholerae Biotypes.
mBio. 2020 Nov 24;11(6):e02901-20. doi: 10.1128/mBio.02901-20.
10
Molecular mechanism of plasmid elimination by the DdmDE defense system.
Science. 2024 Jul 12;385(6705):188-194. doi: 10.1126/science.adq0534. Epub 2024 Jun 13.

引用本文的文献

1
Defence systems encoded by core genomic islands of seventh pandemic .
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240083. doi: 10.1098/rstb.2024.0083.
2
Lineage-specific defence systems of pandemic .
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240076. doi: 10.1098/rstb.2024.0076.
3
Unraveling the role of mobile genetic elements in antibiotic resistance transmission and defense strategies in bacteria.
Front Syst Biol. 2025 Aug 8;5:1557413. doi: 10.3389/fsysb.2025.1557413. eCollection 2025.
6
SMC-like Wadjet system prevents plasmid transfer into Clostridium cellulovorans.
Appl Microbiol Biotechnol. 2025 Jul 23;109(1):170. doi: 10.1007/s00253-025-13551-w.
7
The extended mobility of plasmids.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf652.
8
Activating and inhibiting nucleotide signals coordinate bacterial anti-phage defense.
bioRxiv. 2025 Jul 9:2025.07.09.663793. doi: 10.1101/2025.07.09.663793.
9
The defensome of prokaryotes in aquifers.
Nat Commun. 2025 Jul 14;16(1):6482. doi: 10.1038/s41467-025-61467-w.
10
Allelic variations and gene cluster modularity act as nonlinear bottlenecks for cholera emergence.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2417915122. doi: 10.1073/pnas.2417915122. Epub 2025 May 28.

本文引用的文献

1
The ecological consequences and evolution of retron-mediated suicide as a way to protect Escherichia coli from being killed by phage.
PLoS One. 2023 May 5;18(5):e0285274. doi: 10.1371/journal.pone.0285274. eCollection 2023.
2
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
3
Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts.
Science. 2021 Jul 30;373(6554). doi: 10.1126/science.abg2166.
4
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.
5
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
6
Beyond horizontal gene transfer: the role of plasmids in bacterial evolution.
Nat Rev Microbiol. 2021 Jun;19(6):347-359. doi: 10.1038/s41579-020-00497-1. Epub 2021 Jan 19.
8
Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains.
Environ Microbiol. 2020 Oct;22(10):4485-4504. doi: 10.1111/1462-2920.15224. Epub 2020 Oct 2.
9
DNA targeting and interference by a bacterial Argonaute nuclease.
Nature. 2020 Nov;587(7835):632-637. doi: 10.1038/s41586-020-2605-1. Epub 2020 Jul 30.
10
Abortive Infection: Bacterial Suicide as an Antiviral Immune Strategy.
Annu Rev Virol. 2020 Sep 29;7(1):371-384. doi: 10.1146/annurev-virology-011620-040628. Epub 2020 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验