Centre for Depression and Suicide Studies, St Michael's Hospital, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
Department of Psychiatry, Weill Cornell Medicine, New York, New York.
Biol Psychiatry. 2024 Sep 15;96(6):422-434. doi: 10.1016/j.biopsych.2024.01.012. Epub 2024 Jan 26.
Recent studies have reported significant advances in modeling the biological basis of heterogeneity in major depressive disorder, but investigators have also identified important technical challenges, including scanner-related artifacts, a propensity for multivariate models to overfit, and a need for larger samples with more extensive clinical phenotyping. The goals of the current study were to evaluate dimensional and categorical solutions to parsing heterogeneity in depression that are stable and generalizable in a large, single-site sample.
We used regularized canonical correlation analysis to identify data-driven brain-behavior dimensions that explain individual differences in depression symptom domains in a large, single-site dataset comprising clinical assessments and resting-state functional magnetic resonance imaging data for 328 patients with major depressive disorder and 461 healthy control participants. We examined the stability of clinical loadings and model performance in held-out data. Finally, hierarchical clustering on these dimensions was used to identify categorical depression subtypes.
The optimal regularized canonical correlation analysis model yielded 3 robust and generalizable brain-behavior dimensions that explained individual differences in depressed mood and anxiety, anhedonia, and insomnia. Hierarchical clustering identified 4 depression subtypes, each with distinct clinical symptom profiles, abnormal resting-state functional connectivity patterns, and antidepressant responsiveness to repetitive transcranial magnetic stimulation.
Our results define dimensional and categorical solutions to parsing neurobiological heterogeneity in major depressive disorder that are stable, generalizable, and capable of predicting treatment outcomes, each with distinct advantages in different contexts. They also provide additional evidence that regularized canonical correlation analysis and hierarchical clustering are effective tools for investigating associations between functional connectivity and clinical symptoms.
最近的研究报告称,在对重度抑郁症的生物学基础的异质性进行建模方面取得了重大进展,但研究人员也发现了一些重要的技术挑战,包括与扫描仪相关的伪影、多元模型过度拟合的倾向,以及需要具有更广泛临床表型的更大样本量。本研究的目的是评估在一个大型单站点样本中,对抑郁症异质性进行解析的维度和分类解决方案,这些解决方案具有稳定性和可推广性。
我们使用正则化典型相关分析来识别数据驱动的大脑-行为维度,这些维度可以解释 328 名重度抑郁症患者和 461 名健康对照参与者的临床评估和静息态功能磁共振成像数据中抑郁症状领域的个体差异。我们在保留数据中检查了临床负荷和模型性能的稳定性。最后,对这些维度进行层次聚类,以确定分类的抑郁亚型。
最优正则化典型相关分析模型产生了 3 个稳健且可推广的大脑-行为维度,这些维度可以解释抑郁情绪、焦虑、快感缺失和失眠等症状的个体差异。层次聚类确定了 4 种抑郁亚型,每种亚型都有不同的临床症状谱、异常的静息态功能连接模式和对重复经颅磁刺激的抗抑郁反应。
我们的结果定义了解析重度抑郁症神经生物学异质性的维度和分类解决方案,这些解决方案具有稳定性、可推广性,并能够预测治疗结果,每种解决方案在不同的环境下都有其独特的优势。它们还提供了额外的证据表明,正则化典型相关分析和层次聚类是研究功能连接与临床症状之间关联的有效工具。