Suppr超能文献

对比性功能连接定义了重度抑郁症中基于神经生理学的症状维度。

Contrastive Functional Connectivity Defines Neurophysiology-informed Symptom Dimensions in Major Depression.

作者信息

Zhu Hao, Tong Xiaoyu, Carlisle Nancy B, Xie Hua, Keller Corey J, Oathes Desmond J, Nemeroff Charles B, Fonzo Gregory A, Zhang Yu

机构信息

Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.

Department of Psychology, Lehigh University, Bethlehem, PA, USA.

出版信息

bioRxiv. 2024 Oct 7:2024.10.04.616707. doi: 10.1101/2024.10.04.616707.

Abstract

BACKGROUND

Major depressive disorder (MDD) is a prevalent psychiatric disorder characterized by substantial clinical and neurobiological heterogeneity. Conventional studies that solely focus on clinical symptoms or neuroimaging metrics often fail to capture the intricate relationship between these modalities, limiting their ability to disentangle the complexity in MDD. Moreover, patient neuroimaging data typically contains normal sources of variance shared with healthy controls, which can obscure disorder-specific variance and complicate the delineation of disease heterogeneity.

METHODS

We employed contrastive principal component analysis to extract disorder-specific variations in fMRI-based resting-state functional connectivity (RSFC) by contrasting MDD patients (N=233) with age-matched healthy controls (N=285). We then applied sparse canonical correlation analysis to identify latent dimensions in the disorder variations by linking the extracted contrastive connectivity features to clinical symptoms in MDD patients.

RESULTS

Two significant and generalizable dimensions linking distinct brain circuits and clinical profiles were discovered. The first dimension, associated with an apparent "internalizing-externalizing" symptom dimension, was characterized by self-connections within the visual network and also associated with choice reaction times of cognitive tasks. The second dimension, associated with personality facets such as extraversion and conscientiousness typically inversely associated with depression symptoms, is primarily driven by self-connections within the dorsal attention network. This "depression-protective personality" dimension is also associated with multiple cognitive task performances related to psychomotor slowing and cognitive control.

CONCLUSIONS

Our contrastive RSFC-based dimensional approach offers a new avenue to dissect clinical heterogeneity underlying MDD. By identifying two stable, neurophysiology-informed symptom dimensions in MDD patients, our findings may enhance disease mechanism insights and facilitate precision phenotyping, thus advancing the development of targeted therapeutics for precision mental health.

摘要

背景

重度抑郁症(MDD)是一种常见的精神疾病,具有显著的临床和神经生物学异质性。仅关注临床症状或神经影像学指标的传统研究往往无法捕捉这些模式之间的复杂关系,限制了它们剖析MDD复杂性的能力。此外,患者的神经影像学数据通常包含与健康对照共享的正常变异来源,这可能会掩盖疾病特异性变异,并使疾病异质性的描绘复杂化。

方法

我们采用对比主成分分析,通过将MDD患者(N = 233)与年龄匹配的健康对照(N = 285)进行对比,提取基于功能磁共振成像(fMRI)的静息态功能连接(RSFC)中的疾病特异性变异。然后,我们应用稀疏典型相关分析,通过将提取的对比连接特征与MDD患者的临床症状相联系,识别疾病变异中的潜在维度。

结果

发现了两个将不同脑回路与临床特征联系起来的显著且可推广的维度。第一个维度与明显的“内化 - 外化”症状维度相关,其特征是视觉网络内的自我连接,也与认知任务的选择反应时间有关。第二个维度与外向性和尽责性等人格方面相关,这些方面通常与抑郁症状呈负相关,主要由背侧注意网络内的自我连接驱动。这个“抑郁保护性人格”维度还与多种与精神运动迟缓及认知控制相关的认知任务表现有关。

结论

我们基于对比RSFC的维度方法为剖析MDD潜在的临床异质性提供了一条新途径。通过在MDD患者中识别出两个稳定的、基于神经生理学的症状维度,我们的发现可能会增强对疾病机制的理解,并促进精准表型分析,从而推动精准心理健康靶向治疗的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b42/11482755/68b8b627c69e/nihpp-2024.10.04.616707v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验