Brandenburger Adam, Contreras-Tejada Patricia, La Mura Pierfrancesco, Scarpa Giannicola, Steverson Kai
Stern School of Business, Tandon School of Engineering, NYU Shanghai, New York University, New York, NY 10012, USA.
Instituto de Ciencias Matemáticas, 28049 Madrid, Spain.
Philos Trans A Math Phys Eng Sci. 2024 Mar 18;382(2268):20230004. doi: 10.1098/rsta.2023.0004. Epub 2024 Jan 29.
The Agreement Theorem Aumann (1976 , 1236-1239. (doi:10.1214/aos/1176343654)) states that if two Bayesian agents start with a common prior, then they cannot have common knowledge that they hold different posterior probabilities of some underlying event of interest. In short, the two agents cannot 'agree to disagree'. This result applies in the classical domain where classical probability theory applies. But in non-classical domains, such as the quantum world, classical probability theory does not apply. Inspired principally by their use in quantum mechanics, we employ signed probabilities to investigate the epistemics of the non-classical world. We find that here, too, it cannot be common knowledge that two agents assign different probabilities to an event of interest. However, in a non-classical domain, unlike the classical case, it can be common certainty that two agents assign different probabilities to an event of interest. Finally, in a non-classical domain, it cannot be common certainty that two agents assign different probabilities, if communication of their common certainty is possible-even if communication does not take place. This article is part of the theme issue 'Quantum contextuality, causality and freedom of choice'.
奥曼一致性定理(奥曼,1976年,第1236 - 1239页。doi:10.1214/aos/1176343654)指出,如果两个贝叶斯主体从一个共同先验出发,那么他们不可能共同知道他们对某个感兴趣的潜在事件持有不同的后验概率。简而言之,这两个主体不能“各执己见”。该结果适用于经典概率论适用的经典领域。但在非经典领域,如量子世界,经典概率论并不适用。主要受其在量子力学中的应用启发,我们采用符号概率来研究非经典世界的认识论。我们发现,在这里,两个主体对一个感兴趣的事件赋予不同概率也不可能成为共同知识。然而,在非经典领域,与经典情况不同的是,两个主体对一个感兴趣的事件赋予不同概率可以成为共同确定性。最后,在非经典领域,如果两个主体的共同确定性的交流是可能的——即使交流并未发生——那么两个主体赋予不同概率也不可能成为共同确定性。本文是主题为“量子语境性、因果性与选择自由”的一部分。