Ko Soohyun, Jang Jinhee, Yi Sun Shin, Kwon ChangHyuk
GenesisEgo, Seoul, Republic of Korea.
Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, Republic of Korea.
Front Vet Sci. 2025 Jan 13;11:1489402. doi: 10.3389/fvets.2024.1489402. eCollection 2024.
Hemangiosarcoma is a highly malignant tumor commonly affecting canines, originating from endothelial cells that line blood vessels, underscoring the importance of early detection. This canine cancer is analogous to human angiosarcoma, and the development of liquid biopsies leveraging cell-free DNA (cfDNA) represents a promising step forward in early cancer diagnosis. In this study, we utilized Whole Genome Sequencing (WGS) to analyze fragment sizes and copy number alterations (CNAs) in cfDNA from 21 hemangiosarcoma-affected and 36 healthy dogs, aiming to enhance early cancer detection accuracy through machine learning models. Our findings reveal that similar to trends in human oncology, hemangiosarcoma samples exhibited shorter DNA fragment sizes compared to healthy controls, with a notable leftward shift in the primary peak. Interestingly, canine hemangiosarcoma DNA fragment sizes demonstrated eight distinct periodic patterns diverging from those typically observed in human angiosarcoma. Additionally, we identified seven novel genomic gains and nine losses in the hemangiosarcoma samples. Applying machine learning to the cfDNA fragment size distribution, we achieved an impressive average Area Under the Curve (AUC) of 0.93 in 10-fold cross-validation, underscoring the potential of this approach for precise early-stage cancer classification. This study confirms distinctive cfDNA fragment size and CNA patterns in hemangiosarcoma-affected vs. healthy dogs and demonstrates the promise of these biomarkers in canine cancer screening, early detection, and monitoring via liquid biopsies. These findings establish a foundation for broader research on cfDNA analysis in various canine cancers, integrating methodologies from human oncology to enhance early detection and diagnostic precision in veterinary medicine.
血管肉瘤是一种高度恶性的肿瘤,常见于犬类,起源于血管内壁的内皮细胞,这凸显了早期检测的重要性。这种犬类癌症类似于人类血管肉瘤,利用游离DNA(cfDNA)进行液体活检的发展代表了早期癌症诊断向前迈出的有希望的一步。在本研究中,我们利用全基因组测序(WGS)分析了21只患血管肉瘤的犬和36只健康犬的cfDNA中的片段大小和拷贝数改变(CNA),旨在通过机器学习模型提高早期癌症检测的准确性。我们的研究结果表明,与人类肿瘤学中的趋势相似,与健康对照相比,血管肉瘤样本的DNA片段大小更短,主峰有明显的左移。有趣的是,犬血管肉瘤DNA片段大小显示出八种与人类血管肉瘤中通常观察到的不同的独特周期性模式。此外,我们在血管肉瘤样本中鉴定出七个新的基因组增益和九个缺失。将机器学习应用于cfDNA片段大小分布,我们在10倍交叉验证中实现了令人印象深刻的平均曲线下面积(AUC)为0.93,突出了这种方法在精确早期癌症分类方面的潜力。本研究证实了患血管肉瘤的犬与健康犬在cfDNA片段大小和CNA模式上的差异,并证明了这些生物标志物在犬类癌症筛查、早期检测和通过液体活检进行监测方面的前景。这些发现为在各种犬类癌症中对cfDNA分析进行更广泛的研究奠定了基础,整合了人类肿瘤学的方法以提高兽医学中的早期检测和诊断精度。