Suppr超能文献

病例-队列研究中左截断竞争风险回归的有效估计。

Efficient estimation for left-truncated competing risks regression for case-cohort studies.

机构信息

Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.

Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, United States.

出版信息

Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad008.

Abstract

The case-cohort study design provides a cost-effective study design for a large cohort study with competing risk outcomes. The proportional subdistribution hazards model is widely used to estimate direct covariate effects on the cumulative incidence function for competing risk data. In biomedical studies, left truncation often occurs and brings extra challenges to the analysis. Existing inverse probability weighting methods for case-cohort studies with competing risk data not only have not addressed left truncation, but also are inefficient in regression parameter estimation for fully observed covariates. We propose an augmented inverse probability-weighted estimating equation for left-truncated competing risk data to address these limitations of the current literature. We further propose a more efficient estimator when extra information from the other causes is available. The proposed estimators are consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator is unbiased and leads to estimation efficiency gain in the regression parameter estimation. We analyze the Atherosclerosis Risk in Communities study data using the proposed methods.

摘要

病例-队列研究设计为具有竞争风险结局的大型队列研究提供了一种具有成本效益的研究设计。比例亚分布风险模型广泛用于估计竞争风险数据的累积发生率函数上直接协变量的影响。在生物医学研究中,左截断经常发生,并给分析带来额外的挑战。现有的竞争风险数据病例-队列研究的逆概率加权方法不仅没有解决左截断问题,而且对于完全观察到的协变量的回归参数估计效率也不高。我们提出了一种用于左截断竞争风险数据的增强型逆概率加权估计方程,以解决当前文献的这些局限性。当有其他原因的额外信息时,我们进一步提出了一种更有效的估计器。所提出的估计量是一致的,并且渐近正态分布。模拟研究表明,所提出的估计量是无偏的,并在回归参数估计中提高了估计效率。我们使用所提出的方法分析了社区动脉粥样硬化风险研究数据。

相似文献

2
Additive subdistribution hazards regression for competing risks data in case-cohort studies.
Biometrics. 2023 Dec;79(4):3010-3022. doi: 10.1111/biom.13821. Epub 2023 Jan 31.
3
Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design.
Lifetime Data Anal. 2022 Apr;28(2):241-262. doi: 10.1007/s10985-022-09546-8. Epub 2022 Jan 15.
6
General regression model for the subdistribution of a competing risk under left-truncation and right-censoring.
Biometrika. 2020 Jun 17;107(4):949-964. doi: 10.1093/biomet/asaa034. eCollection 2020 Dec.
9
Estimating cumulative incidence functions in competing risks data with dependent left-truncation.
Stat Med. 2020 Feb 20;39(4):481-493. doi: 10.1002/sim.8421. Epub 2019 Dec 1.
10
Semiparametric regression and risk prediction with competing risks data under missing cause of failure.
Lifetime Data Anal. 2020 Oct;26(4):659-684. doi: 10.1007/s10985-020-09494-1. Epub 2020 Jan 25.

本文引用的文献

1
Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design.
Lifetime Data Anal. 2022 Apr;28(2):241-262. doi: 10.1007/s10985-022-09546-8. Epub 2022 Jan 15.
2
Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation.
J Am Stat Assoc. 2017;112(519):1221-1235. doi: 10.1080/01621459.2016.1205500. Epub 2017 Apr 25.
3
Analysis of multiple survival events in generalized case-cohort designs.
Biometrics. 2018 Dec;74(4):1250-1260. doi: 10.1111/biom.12923. Epub 2018 Jul 10.
4
flexsurv: A Platform for Parametric Survival Modeling in R.
J Stat Softw. 2016 May 12;70. doi: 10.18637/jss.v070.i08.
5
Efficient Estimation of Semiparametric Transformation Models for the Cumulative Incidence of Competing Risks.
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):573-587. doi: 10.1111/rssb.12177. Epub 2016 Apr 14.
7
Efficient Estimation of Semiparametric Transformation Models for Two-Phase Cohort Studies.
J Am Stat Assoc. 2014 Jan 1;109(505):371-383. doi: 10.1080/01621459.2013.842172.
8
More efficient estimators for case-cohort studies.
Biometrika. 2013;100(3):695-708. doi: 10.1093/biomet/ast018.
9
Pseudo-partial likelihood for proportional hazards models with biased-sampling data.
Biometrika. 2009 Sep;96(3):601-615. doi: 10.1093/biomet/asp026. Epub 2009 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验