Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, United States.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad008.
The case-cohort study design provides a cost-effective study design for a large cohort study with competing risk outcomes. The proportional subdistribution hazards model is widely used to estimate direct covariate effects on the cumulative incidence function for competing risk data. In biomedical studies, left truncation often occurs and brings extra challenges to the analysis. Existing inverse probability weighting methods for case-cohort studies with competing risk data not only have not addressed left truncation, but also are inefficient in regression parameter estimation for fully observed covariates. We propose an augmented inverse probability-weighted estimating equation for left-truncated competing risk data to address these limitations of the current literature. We further propose a more efficient estimator when extra information from the other causes is available. The proposed estimators are consistent and asymptotically normally distributed. Simulation studies show that the proposed estimator is unbiased and leads to estimation efficiency gain in the regression parameter estimation. We analyze the Atherosclerosis Risk in Communities study data using the proposed methods.
病例-队列研究设计为具有竞争风险结局的大型队列研究提供了一种具有成本效益的研究设计。比例亚分布风险模型广泛用于估计竞争风险数据的累积发生率函数上直接协变量的影响。在生物医学研究中,左截断经常发生,并给分析带来额外的挑战。现有的竞争风险数据病例-队列研究的逆概率加权方法不仅没有解决左截断问题,而且对于完全观察到的协变量的回归参数估计效率也不高。我们提出了一种用于左截断竞争风险数据的增强型逆概率加权估计方程,以解决当前文献的这些局限性。当有其他原因的额外信息时,我们进一步提出了一种更有效的估计器。所提出的估计量是一致的,并且渐近正态分布。模拟研究表明,所提出的估计量是无偏的,并在回归参数估计中提高了估计效率。我们使用所提出的方法分析了社区动脉粥样硬化风险研究数据。