Suppr超能文献

鉴定特征基因集可准确判断代谢相关脂肪性肝病的进展。

Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression.

机构信息

Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea.

Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea.

出版信息

Clin Mol Hepatol. 2024 Apr;30(2):247-262. doi: 10.3350/cmh.2023.0449. Epub 2024 Jan 26.

Abstract

BACKGROUND/AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression.

METHODS

Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD.

RESULTS

After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort.

CONCLUSION

We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.

摘要

背景/目的:代谢相关脂肪性肝病(MASLD)的特征是肝脏脂肪堆积。MASLD 包括脂肪变性和 MASH。由于 MASH 可导致肝硬化和肝癌,因此在治疗患者时必须区分脂肪变性和 MASH。在这里,我们研究了 MASLD 患者的基因组、表观基因组和转录组,以确定用于更准确跟踪 MASLD 进展的特征基因集。

方法

对 134 名 MASLD 患者(包括 60 名脂肪变性患者和 74 名 MASH 患者)的活检组织和血液样本进行了组学分析。使用 SVM 学习算法计算最具预测性的特征。应用线性回归找到可区分 MASLD 阶段的特征基因集,并将其应用于 MASLD 的独立队列中进行验证。

结果

在对 134 名确诊的 MASLD 患者的活检样本进行 WGS、WES、WGBS 和全转录组 RNA-seq 后,我们提供了 1955 个与 MASLD 相关的特征,其中包括 3176 个体细胞变异呼叫、58 个 DMR 和 1393 个跟踪 MASLD 进展的 DEG。然后,我们使用 SVM 学习算法分析数据并选择最具预测性的特征。使用线性回归,我们确定了一个能够区分 MASLD 不同阶段的特征基因集,并在不同的 MASLD 独立队列和肝癌队列中进行了验证。

结论

我们确定了一个具有强大潜力的特征基因集(即 CAPG、HYAL3、WIPI1、TREM2、SPP1 和 RNASE6),作为 MASLD 相关疾病的诊断基因组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e1a/11016492/924d93439d6d/cmh-2023-0449f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验