Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Spain.
Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (Joint Unit Eurecat-Universitat Rovira i Virgili), Unique Scientific and Technical Infrastructure (ICTS), Av. Universitat 1, 43204 Reus, Spain.
Biomolecules. 2021 Mar 22;11(3):473. doi: 10.3390/biom11030473.
Hepatic biopsy is the gold standard for staging nonalcoholic fatty liver disease (NAFLD). Unfortunately, accessing the liver is invasive, requires a multidisciplinary team and is too expensive to be conducted on large segments of the population. NAFLD starts quietly and can progress until liver damage is irreversible. Given this complex situation, the search for noninvasive alternatives is clinically important. A hallmark of NAFLD progression is the dysregulation in lipid metabolism. In this context, recent advances in the area of machine learning have increased the interest in evaluating whether multi-omics data analysis performed on peripheral blood can enhance human interpretation. In the present review, we show how the use of machine learning can identify sets of lipids as predictive biomarkers of NAFLD progression. This approach could potentially help clinicians to improve the diagnosis accuracy and predict the future risk of the disease. While NAFLD has no effective treatment yet, the key to slowing the progression of the disease may lie in predictive robust biomarkers. Hence, to detect this disease as soon as possible, the use of computational science can help us to make a more accurate and reliable diagnosis. We aimed to provide a general overview for all readers interested in implementing these methods.
肝活检是非酒精性脂肪性肝病 (NAFLD) 分期的金标准。然而,获取肝脏组织具有侵入性,需要多学科团队的参与,而且费用过高,无法在大量人群中进行。NAFLD 悄无声息地发展,可能会导致肝损伤不可逆转。鉴于这种复杂情况,寻找非侵入性替代方法具有重要的临床意义。NAFLD 进展的一个标志是脂质代谢失调。在这种情况下,机器学习领域的最新进展增加了人们对评估外周血多组学数据分析是否可以增强人类解释的兴趣。在本综述中,我们展示了如何使用机器学习来识别脂质集作为 NAFLD 进展的预测生物标志物。这种方法可能有助于临床医生提高诊断准确性并预测疾病的未来风险。虽然目前尚无有效的 NAFLD 治疗方法,但减缓疾病进展的关键可能在于具有预测能力的稳健生物标志物。因此,为了尽早发现这种疾病,计算科学的应用可以帮助我们做出更准确、更可靠的诊断。我们旨在为所有有兴趣实施这些方法的读者提供一个概述。