Suppr超能文献

利用非接触技术进行肩部外展运动中的关节角度估计。

Joint angle estimation during shoulder abduction exercise using contactless technology.

机构信息

KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, 550 University Ave, Toronto, M5G 2A2, ON, Canada.

Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, M5S 3G9, ON, Canada.

出版信息

Biomed Eng Online. 2024 Jan 28;23(1):11. doi: 10.1186/s12938-024-01203-5.

Abstract

BACKGROUND

Tele-rehabilitation, also known as tele-rehab, uses communication technologies to provide rehabilitation services from a distance. The COVID-19 pandemic has highlighted the importance of tele-rehab, where the in-person visits declined and the demand for remote healthcare rises. Tele-rehab offers enhanced accessibility, convenience, cost-effectiveness, flexibility, care quality, continuity, and communication. However, the current systems are often not able to perform a comprehensive movement analysis. To address this, we propose and validate a novel approach using depth technology and skeleton tracking algorithms.

METHODS

Our data involved 14 participants (8 females, 6 males) performing shoulder abduction exercises. We collected depth videos from an LiDAR camera and motion data from a Motion Capture (Mocap) system as our ground truth. The data were collected at distances of 2 m, 2.5 m, and 3.5 m from the LiDAR sensor for both arms. Our innovative approach integrates LiDAR with the Cubemos and Mediapipe skeleton tracking frameworks, enabling the assessment of 3D joint angles. We validated the system by comparing the estimated joint angles versus Mocap outputs. Personalized calibration was applied using various regression models to enhance the accuracy of the joint angle calculations.

RESULTS

The Cubemos skeleton tracking system outperformed Mediapipe in joint angle estimation with higher accuracy and fewer errors. The proposed system showed a strong correlation with Mocap results, although some deviations were present due to noise. Precision decreased as the distance from the camera increased. Calibration significantly improved performance. Linear regression models consistently outperformed nonlinear models, especially at shorter distances.

CONCLUSION

This study showcases the potential of a marker-less system, to proficiently track body joints and upper-limb angles. Signals from the proposed system and the Mocap system exhibited robust correlation, with Mean Absolute Errors (MAEs) consistently below [Formula: see text]. LiDAR's depth feature enabled accurate computation of in-depth angles beyond the reach of traditional RGB cameras. Altogether, this emphasizes the depth-based system's potential for precise joint tracking and angle calculation in tele-rehab applications.

摘要

背景

远程康复,也称为远程康复,使用通信技术从远程提供康复服务。COVID-19 大流行凸显了远程康复的重要性,因为面对面的访问减少了,对远程医疗的需求增加了。远程康复提供了增强的可及性、便利性、成本效益、灵活性、护理质量、连续性和沟通。然而,当前的系统通常无法进行全面的运动分析。为了解决这个问题,我们提出并验证了一种使用深度技术和骨骼跟踪算法的新方法。

方法

我们的数据涉及 14 名参与者(8 名女性,6 名男性)进行肩部外展运动。我们从 LiDAR 相机收集深度视频,并从运动捕捉 (Mocap) 系统收集运动数据作为我们的基准。数据是在距离 LiDAR 传感器 2m、2.5m 和 3.5m 的位置从两个手臂收集的。我们的创新方法将 LiDAR 与 Cubemos 和 Mediapipe 骨骼跟踪框架集成在一起,实现了 3D 关节角度的评估。我们通过将估计的关节角度与 Mocap 输出进行比较来验证系统。使用各种回归模型进行个性化校准,以提高关节角度计算的准确性。

结果

Cubemos 骨骼跟踪系统在关节角度估计方面优于 Mediapipe,具有更高的准确性和更少的误差。所提出的系统与 Mocap 结果具有很强的相关性,尽管由于噪声存在一些偏差。随着距离相机的增加,精度会降低。校准显著提高了性能。线性回归模型始终优于非线性模型,尤其是在较短的距离内。

结论

这项研究展示了无标记系统能够熟练地跟踪身体关节和上肢角度的潜力。所提出的系统和 Mocap 系统的信号表现出强大的相关性,平均绝对误差 (MAE) 始终低于 [公式:请在此处插入公式]。LiDAR 的深度特征能够准确计算传统 RGB 相机无法到达的深部角度。总之,这强调了基于深度的系统在远程康复应用中进行精确关节跟踪和角度计算的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa16/10822169/34c4c4ded098/12938_2024_1203_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验