Suppr超能文献

长新冠、肌痛性脑脊髓炎/慢性疲劳综合征患者和健康对照者中德保罗症状问卷-短表(DSQ-SF)的心理计量学评估:一种机器学习方法。

Psychometric evaluation of the DePaul Symptom Questionnaire-Short Form (DSQ-SF) among adults with Long COVID, ME/CFS, and healthy controls: A machine learning approach.

机构信息

University of Kentucky, USA.

DePaul University, USA.

出版信息

J Health Psychol. 2024 Sep;29(11):1241-1252. doi: 10.1177/13591053231223882. Epub 2024 Jan 28.

Abstract

Long COVID shares a number of clinical features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), including post-exertional malaise, severe fatigue, and neurocognitive deficits. Utilizing validated assessment tools that accurately and efficiently screen for these conditions can facilitate diagnostic and treatment efforts, thereby improving patient outcomes. In this study, we generated a series of random forest machine learning algorithms to evaluate the psychometric properties of the DePaul Symptom Questionnaire-Short Form (DSQ-SF) in classifying large groups of adults with Long COVID, ME/CFS (without Long COVID), and healthy controls. We demonstrated that the DSQ-SF can accurately classify these populations with high degrees of sensitivity and specificity. In turn, we identified the particular DSQ-SF symptom items that best distinguish Long COVID from ME/CFS, as well as those that differentiate these illness groups from healthy controls.

摘要

长新冠与肌痛性脑脊髓炎/慢性疲劳综合征 (ME/CFS) 在许多临床特征上存在重叠,包括活动后不适、严重疲劳和神经认知缺陷。使用经过验证的评估工具,这些工具能够准确、有效地筛选这些病症,可以促进诊断和治疗工作,从而改善患者的预后。在这项研究中,我们生成了一系列随机森林机器学习算法,以评估德保罗症状问卷-短表 (DSQ-SF) 在对患有长新冠、ME/CFS(无长新冠)和健康对照组的大量成年人进行分类方面的心理测量特性。我们证明,DSQ-SF 可以高度敏感和特异性地准确分类这些人群。反过来,我们确定了 DSQ-SF 症状项目中能够最好地区分长新冠与 ME/CFS 的项目,以及能够区分这些疾病组与健康对照组的项目。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验